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CHAPTER 1 

INTRODUCTION 

Motivation and Background 

In cases of suspected child abuse with skeletal trauma, it is often the role of the 

injury biomechanist, forensic pathologist, clinical radiologist and forensic anthropologist 

to determine the mechanism of injury when child victims cannot speak for themselves.  

This is a challenging task, especially for the head, as comprehensive biomechanical 

data on skull fracture in infants and children do not currently exist, and frequently the 

determination regarding cause of injury is based on anecdotal evidence from the 

medical literature and unsubstantiated eyewitness accounts.  The current process can 

result in unreliable autopsy interpretation and miscarriages of justice due to a lack of 

scientific verification in expert witness testimony.  A method to examine the 

mechanisms of skeletal trauma, specifically skull fracture, in children would be 

beneficial in providing a solid biomechanical foundation to the forensic investigators in 

these child abuse cases. 

This information is particularly needed for investigations of skull fracture in infants 

and toddlers younger than two years of age, whose fontanels and sutures have not 

closed completely. A large study, including 996 children under the age of two with 

fracture due to intentional injury, showed 27% of these children had skull fractures 

(Loder and Feinberg 2007).  In another study of 904 intentional injury cases, 

approximately one third of all fractures were skull fractures (Merten, Radkowski et al. 

1983).  In a smaller study cohort of 54 pediatric head injury cases due to intentional 

injury, it was found that 56% suffered complex or linear skull fractures (Reece and Sege 
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2000).  Other studies have examined both skull fracture and spreading of the sutures.  

Of 100 cases of intentional injury in infants, 22% showed evidence of skull fracture, but 

42% showed suture spreading, with or without fracture (Kogutt, Swischuk et al. 1974).   

Additionally, skull fractures from intentional injury are more likely to be fatal than 

accidental injuries, according to the results of Hobbs (Hobbs 1984).  In this study of 89 

children under the age of two with skull fracture, 19 of the 20 fatalities were cases of 

intentional injury, although this may be related to concomitant brain injury. 

The forensic investigators lack the information required to associate specific skull 

fracture patterns to mechanical input and injury scenarios.  In cases of intentional injury, 

some reported cranial fracture characteristics were more likely to include the following: 

(Hobbs 1984; Worlock, Stower et al. 1986; Meservy, Towbin et al. 1987; Leventhal, 

Thomas et al. 1993; Walker, Cook et al. 1997): 

� Multiple or complex fractures with separation of bone fragments 

� Bilateral fractures 

� Depressed fractures 

� Wide, long, or growing fractures 

� Crossing of the suture lines 

� Fracture of multiple cranial bones 

� Fracture in occipital or temporal regions 

However, one must understand that these fracture characteristics are not unique to 

cases of intentional injury, and abuse can be a factor even if none of these 

characteristics is present.  For example, in the Reece and Sege (Reece and Sege 

2000) study mentioned above, linear fractures were much more common than complex 
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fractures.  In addition, the parietal bone is the most common fracture site in both 

intentional and non-intentional skull fracture (Hobbs 1984; Meservy, Towbin et al. 1987; 

Leventhal, Thomas et al. 1993). 

 The above conclusions were drawn from forensic case studies and anecdotal 

evidence.  Well-controlled infant injury biomechanics studies are absent from the 

literature, leading to an unclear understanding of the injury mechanism.  In order to fully 

investigate the impact event leading to skull fracture, computational modeling 

techniques can be beneficial.  The method to be applied for this research, finite element 

modeling, allows for an anatomically-detailed geometry to be represented by discrete 

two-dimensional (2D) or three-dimensional (3D) shapes.  The behavior of these discrete 

“elements” is governed by constitutive equations and strain energy functions, resulting 

in a prediction of the stress and strain profiles experienced by each element and the 

structure as a whole.  Using this method, many well-controlled impact scenarios can be 

applied to identical models, eliminating anatomical variability and facilitating true 

comparison in resulting biomechanics.  Another advantage of computational modeling is 

the ability to analyze several biomechanical outputs within the continuum, as opposed 

to experimental studies wherein global or isolated local measurements are taken.  Using 

these numerical methods, a more complete picture of infant skull biomechanics is 

possible. 

Specific Aims 

 As a preliminary step in the development of computational models that could be 

used to investigate pediatric skull fracture in the future, piglets have been identified as a 
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possible surrogate from which to generate data in the absence of human data. To this 

end, the following specific aims have been achieved: 

1) Determine appropriate constitutive laws and material properties for the 

piglet skull and suture in more than one age group, including an 

appropriate failure criterion 

2) Predict skull fracture patterns in a piglet model using finite element 

methods and replicate these patterns visually 

3) Investigate the sensitivity of the computational models  to changes in 

loading direction at a single impact point 

Structure of the Dissertation 

In Chapter 2, the biomechanics related to pediatric skull fracture will be 

discussed, particularly in how the infant head response to impact differs from that of the 

adult and the fracture mechanics thereof.  Chapter 3 will introduce the piglet as a 

biomechanical surrogate for the infant skull; review the relevant literature related to 

pediatric material properties; and propose a novel technique for computational modeling 

of skull fracture in LS-DYNA, taking into account the morphological structure of the 

piglet braincase.  Two finite element models representing piglet heads at two different 

ages (and levels of maturity) were developed.  Validation of these models was 

performed against drop stand impacts performed at Michigan State University by 

comparing the fracture patterns and other biometrics.  Age-specific piglet computational 

models developed in Chapter 3 are parametrically exercised in Chapter 4, employing 

robustness studies designed to determine model sensitivity to the failure criterion and to 

investigate the effects of slight variances in loading direction.  Chapter 5 offers 
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discussion of the feasibility and validity of using these finite element modeling 

techniques as a forensic tool, as well as the current state of fracture modeling in LS-

DYNA and recommendations for improvement. 
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CHAPTER 2 

INFANT SKULL FRACTURE BIOMECHANICS 

Infant Skull Anatomy 

In the adult, the skull is comprised of 22 flattened, irregular bones, divided into 

cranial bones that encase the brain and facial bones which help facilitate sight, 

respiration, mastication, and other functions, as seen in Table 1 and Figure 1.  These 

bones are joined by interdigitated sutures, which restrict movement between the bones 

(with the exception of the mandible). 

Table 1 Classification of skull bones 

Cranial 

Paired 
Temporal (bilateral) 

Parietal (bilateral) 

Unpaired 

Occipital 

Frontal 

Sphenoid 

Ethmoid 

Facial 

Paired 

Nasal 

Maxilla 

Lacrimal 

Zygoma 

Palatine 

Inferior nasal conchae 

Unpaired 
Vomer 

Mandible 
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Figure 1 Bones of the skull taken from Gray, 1918 

In the child, the skull differs from the mature skull in geometrical proportion, 

connectivity, and osteologic structure.  The pediatric skull is disproportionately large at 

birth, and the face comprises only one-eighth of the area of the head compared to one-

half in the adult.  This is illustrated graphically in Figure 2.  The frontal and parietal 

bones are prominent, leading to an additional geometric dissimilarity between the infant 

and the adult.  Growth is slow from the seventh year onward, and it is at this point that 

the foramen magnum and orbits have reached approximately full size. 

 

Figure 2 Growth of the skull taken from Burdi 1969 
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The bones of the infant skull are not tightly coupled as in the adult.  Instead, the 

bones are loosely connected by fibrous tissue at the suture lines, as shown in Figure 3.  

In areas where more than one other bone comes together around the parietal bones, a 

“soft spot” called the fontanelle is formed in which a tough membrane lies between the 

scalp and the brain.  There are six of these fontanelles in the newborn skull, which close 

at varying rates due to expansion and ossification of surrounding bone.  The largest 

fontanelle, the anterior fontanelle, measures about 40 mm by 25 mm at birth and closes 

sometime before the second year.   

 

Figure 3 Fontanelles and sutures of the infant skull from 

http://www.nlm.nih.gov/medlineplus/ency/imagepages/1127.htm 

 

There are two types of growth that occur in the skull.  Surface growth involves 

increasing bone thickness through ectocranial and endocranial bone deposition.  This 

type of growth also encompasses development of the diploe layer.  Adult skull bones 

have a three-layered sandwich structure consisting of the cortical lamina interna and 
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externa with a less dense intermediate diploe layer.  According to Holck (Holck 2005), 

an infant’s skull is made of lamellar layers, strengthening the thin bone plate.  The 

three-layer composition does not begin to develop until the third year of age.  Marginal 

growth involves ossification extending towards the periphery, expanding the area of the 

bone, and is facilitated by sutures and fontanelles.  The growth of the brain causes 

outward displacement of the skull bones of the cranial vault, and the bone remodeling 

assists in the alteration of the skull plate curvature.  This is illustrated schematically in 

Figure 4, with plus and minus signs showing bone resorption and deposition. 

 

 

Figure 4 Growth in the infant skull taken from Cohen, 1993 

The posterior fontanelle, the two sphenoidal fontanelles, and the two mastoid 

fontanelles close within six months to two years after birth (2-3 months is typical) 

(Hummel and Fortado 2005).  The sutures “fuse” by two years of age (Hummel and 

Fortado 2005), but a small amount of fibrous tissue remains to facilitate future marginal 

growth (see Figure 5). 
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Figure 5 Suture morphology taken from Cohen, 1993 

At birth, some of the skull bones may encompass more than one piece (e.g. 

occipital, frontal, temporal, sphenoid, and mandible).  Ossification occurs gradually 

during the growth process at a variable rate dependent upon many factors, including 

location.  For this study, the bones of interest are the parietal and occipital because 

these are the bones most affected by parietal impact, and their gross development will 

be discussed in further detail below. 

An infant occiput is shown in Figure 6.  In approximately the fourth year of life, 

the occipital squama and the two inferior lateral portions unite, and by the sixth year the 

bone consists of a single piece.  

 

Figure 6 Gray's Anatomy infant occiput taken from Gray, 1918 
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In contrast, the parietal bone forms from a single ossification center and does not 

exhibit the fusion process necessary to unite partially ossified portions (Figure 7).  

Ossification extends radially from this point, leading to the periphery being less mature 

than that exhibited near the center (Gray 1918).  The parietal bone is not circular, but 

displays angles at four corners, which are the last part to form, replacing the fontanels.  

(Note that there is a difference between ossification, the formation of bone tissue, and 

mineralization, the hardening of this tissue, both of which will affect material response. 

Bone tissue formation, described here, is followed by mineralization, in which the 

inorganic components are deposited and does not necessarily match the rate of 

ossification. This is relevant to tissue behavior and will be discussed further in Chapter 

3.) 

 

Figure 7 Gray's Anatomy infant left parietal taken from Gray, 1918 
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Infant Skull Biomechanics 

Deformation due to impact 

The infant skull is much more compliant than the adult skull, partially due to the 

level of bone development and partially due to the presence of unfused sutures and 

membranous fontanels.  Mechanically, the bones of the infant skull form a segmented 

construction that can be considered a collection of loosely connected curved plates.  As 

mentioned previously, infant bone plates differ from adult skull bones in that they do not 

have a fully developed sandwich structure, and a lower calcium content which could 

result in a material with brittle, nearly elastic behavior.  It has been stated that impact to 

the infant skull causes significant elastic deformation and high strains (Ommaya, 

Goldsmith et al. 2002), but this has not been confirmed experimentally.  Alternatively, it 

could be expected that impulsive loading would produce relatively little skull 

deformation, although pressure wave propagation through the brain may or may not be 

significant.  It has been postulated by Ommaya and Goldsmith that the infant skull can 

resist compressive and shear loading, but is “incapable of transmitting bending” at the 

sutures.  Although it is clear that the sutures play some role in skull deformation in the 

infant, the exact implications of this anatomical feature are not precisely known.  The 

face, however, is relatively rigid when compared to the compliant infant braincase with 

unfused sutures and may have less effect on global deformation. 

Experimental studies to elucidate the exact nature of infant skull deformation and 

confirm subjective observations of skull biomechanics in living children are limited. One 

group of researchers (Prange, Luck et al. 2004) has hypothesized that the intact infant 
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head demonstrates viscoelastic structural properties and performed nondestructive 

tests to study its biomechanical behavior. 

Three specimens, which were composed of the head without the cervical spine, 

were harvested from cadavers aged one, three, and eleven days old. The mandible was 

removed, but the skin of the scalp remained undisturbed. For compression testing, the 

foramen magnum was blocked with gauze to ensure the intracranial contents remained 

in place during the experiment. The specimens were exposed to compression between 

two parallel plates at the anterior- and posterior-most or lateral-most of the head by a 

hydraulic actuator. A 0.5 N preload was applied to position the samples, but the 

maximum deformation for the entire experimental procedure was kept under 5% of the 

gauge length of the head to prevent failure. Before the tests were performed, 

preconditioning was conducted for 60 cycles at 1 Hz with a peak amplitude of 50% of 

the maximum displacement (as determined by individual gauge length). The specimens 

were tested at four loading rates, as seen in Figure 8, and in two directions (anterior-

posterior and lateral right-left), and the force and deflection were recorded.  The force-

deflection curves showed an initial toe region; therefore, linear regression was used on 

the data from 50% to 100% maximum deflection to determine the stiffness.  The 

stiffness was found to be significantly dependent (p < 0.01) on loading rate in that the 

quasi-static rate showed a lower stiffness than the other rates, which were not 

significantly different from one another.  There was no statistical difference in terms of 

the direction of compression.  Stiffness data are shown in Figure 8, and a dependence 

on loading rate indicated a viscoelastic response according to the authors, which was 

confirmed through impact testing (described below) and analytical modeling (Figure 9). 
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Figure 8 Intact infant head stiffness in two directions from Prange's data 

  

Figure 9 Prange's analytical model results for a 15-cm drop 

The specimens in this study were also tested in impact.  Before this part of the 

experimental protocol was performed, any void areas of the head were filled with water, 

and the foramen magnum was sealed with polymethylmethacrylate.  The specimen was 

held at a certain drop height and orientation, and released by burning through the 

suspending string in order to limit initial translation or rotation.  The drop heights were 
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estimated to be 15 or 30 cm, as measured by a ruler.  The orientations were chosen so 

that the impacts occurred in five locations: vertex, occiput, forehead, right parietal, and 

left parietal.  Therefore, each specimen underwent ten nondestructive drops.  The 

resulting peak accelerations can be seen in Figure 10.  The peak acceleration was not 

significantly affected by impact location.  Figure 11 demonstrates a typical time history 

for the drop tests, and shows that the shape of the curve can appear different for 

different conditions, but this was not statistically significant across the tests.  

Acceleration pulse durations were similar for the two drop heights, as calculated by 

dividing force plate data by head mass. 

 

Figure 10 Peak accelerations for dropped intact infant heads 
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Figure 11 Acceleration time histories for 30-cm drop 

Biomechanics of skull fracture  

Skull fracture in the adult skull has been studied by many researchers, and 

failure stresses and strains reported.  According to a review conducted by Ommaya et 

al. (Ommaya, Goldsmith et al. 2002), the adult skull fractures at tensile strains of 2%, 

and the diploe can be crushed under radial loading.  Ommaya’s review also indicated 

that adult resistance to skull fracture is eleven times greater than newborns based on 

failure stress, but it was unclear from where these data were obtained.  

Fracture patterns in the adult skull have been described as well.  Yoganandan et 

al. (Yoganandan, Pintar et al. 1995) reported complex fracture patterns, dependent on 

impact location.  Fracture widths were narrower at the impact location, echoing results 

obtained by Gurdjian using the stress-coat technique (Gurdjian and Lissner 1945).  A 

review of temporoparietal skull fracture by Yoganandan and Pintar (Yoganandan and 

Pintar 2004) indicated that the parietal bone fractured in a similar manner to the frontal 

and occipital bones, due to their similar material construction.  However, it was noted 
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that the tolerances are generally slightly lower for lateral impact.  This may be due to 

anatomical considerations. 

Information on fracture of the infant skull is generally obtained from pathologists 

or forensic anthropologists in case reports.  It has been observed that fracture lines in 

the infant skull follow along the spiculae emanating from centers of ossification (Holck 

2005).  Little data have been compiled about infant skull fracture trends beyond the 

common observations with child abuse outlined in Chapter 1.  The role of the sutures in 

infant skull fracture is still unclear. 

To the best of the author’s knowledge, few researchers (Weber 1984; Weber 

1985; Holck 2005) have studied skull fracture experimentally using infant cadaveric 

specimens.  These studies involved infant subjects up to 9 months old who died of 

pathological causes and were checked for previous fractures.  In the first study, the 

subjects were dropped from 82 cm onto three hard surfaces: stone (n=5), thin carpet 

(n=5), and linoleum (n=5).  The second study involved a similar protocol, but two softer 

impact surfaces were utilized: 2-cm thick rubber mat (n=10) and 8-cm folded blanket 

(n=25).  Although no details were provided for the drop method beyond the original 

position being a horizontal orientation, the impacts were described as parieto-occipital 

impacts.  It is not clear from the publication or the results if a consistent impact side was 

used.  Autopsies were performed to examine the subjects for fracture, and the fracture 

patterns sketched, as shown in Figure 12 and Figure 13. The subject-specific age, 

gender, head circumference and weight are given in the figures. 
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Figure 12 Skull fracture patterns from 82-cm drops with parieto-occiptal impact 

onto three hard surfaces: (A) stone, (B) carpet, (C) linoleum taken from Weber 

1984 

 

Figure 13 Skull fracture patterns from 82-cm drops with parieto-occiptal 

impact onto two softer surfaces: (D) mat, (E) blanket taken from Weber 1985 

 

For impacts onto hard surfaces, all subjects sustained linear fractures, and in 

three subjects, the fracture lines crossed sutures.  For impacts onto soft surfaces, most 

subjects did not sustain fracture.  Only one of ten subjects fractured on the rubber mat, 

and four of twenty-five on the blanket.  The fractures seen were similar to the first study, 
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but none crossed a suture line.  For the impacts onto softer surfaces, bone thickness 

around the fracture site was measured and bone translucency observed.  A relevant 

finding was that the fractures occurred along lines of bone translucency, where the bone 

was 0.1-0.4 mm in thickness.  These studies seemed to indicate that the likelihood of 

fracture or likelihood of the fracture to cross the suture line was not dictated by age or 

impact energy, within these small ranges, and the crack initiation point remains 

unknown.   

Although experimental studies are rare, recent advances in computational 

technology have allowed researchers to make some observations on infant skull 

deformation and fracture biomechanics.  These models, while impossible to fully 

validate due to a lack of experimental data, can provide insight into the biomechanics on 

at least a qualitative level. 

Infant Head Finite Element Models  

Several finite element models developed to study infant skull or brain 

biomechanics have been published in the literature. A majority of these are 

impact models, although there are also some models used to study fetal head 

molding during birth. Key parameters of the impact models are listed in Appendix 

1, and the published details of each model and results are described below.  

Idealized 3-month-old: skull deformation 

To study the deformations of the immature skull, Kurtz et al (1998) created an 

idealized partial infant head model representing a 3-month-old.  Bone was modeled 

using shell elements, but the sutures were modeled as linear springs, supporting 

tension and not bending.  The idealized brain included a separate dura (shells) and 
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continuum cerebral spinal fluid (CSF)/brain (solids).  Frictionless contact was used at 

the skull-dura interface.  The authors modeled the bone using an isotropic, deviatoric 

rate-independent elastic-plastic model with a von Mises yield criterion, allowing 

compressibility during elastic deformations but no volume change during plastic 

deformations.  The brain was modeled as a linear viscoelastic solid.  Material properties 

for the bone and suture were derived from a single 3-month-old subject (Runge, 

Youssef et al. 1998).  Elastic properties of the dura and foramen magnum were chosen 

to be comparatively small to account for the mechanical impedance of the spinal cord.  

A flat impactor was modeled to simulate lateral and posterior impacts of 1 kN at 45 

degrees.  The lateral load produced plastic deformations of the parietal region and 

strains up to 7%.  The occipital impact predicted strains of 12.6%, which is higher than 

the maximum effective strain for infant bone, according to the material property study. 

Idealized 1-month-old infant and adult: influence of skull material on brain response 

Another simplified model was created by Margulies and Thibault (Margulies and 

Thibault 2000) to compare biomechanical response using infant and adult material 

properties of the skull and suture. The adult model had an elastic modulus of 10 GPa, 

while the infant model had moduli of 1.3 GPa for bone and 200 MPa for suture.  A 

homogenous brain mass was included, but the brain tissue properties were not varied 

between the adult and infant. A half-sine load of 10 ms duration was applied to the 

parietal region at a 45-degree angle using a flat impactor at 1000 and 5000 N 

amplitudes, as shown in Figure 14. Skull deformations and the accompanying 

intracranial strains affecting the brain were noticeably affected by the change in elastic 

modulus from adult to infant. Peak intrusion was more than double for the infant as 
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compared to the adult, and the response of the brain showed diffuse bilateral strain 

distribution in the infant and focal unilateral distribution in the adult. This indicates that 

impacts causing focal brain injuries in adults possibly yield diffuse injuries in children, 

due to the more compliant braincase. 

 

Figure 14 Strain distributions in adult and infant braincase models- 

boundary conditions were not published, but reported to be the same for each 

model (Image: Margulies and Thibault, 2000) 

 

Detailed 6-month-old: comparison with CRABI dummy  

Klinich et al. (Desantis Klinich, Hulbert et al. 2002) created an infant head model 

to study automotive impact and compare results with those obtained from a 6-month-old 

Child Restraint Air Bag Interaction (CRABI) dummy. The geometry for this model was 

based on manual processing of the CT scan of a 27-week-old subject. The skull and 

sutures were modeled using thick shells, and the average skull thickness measured 
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from each CT slice (no orientation stated) was used to determine the inner skull surface 

contour.  Other components, including a homogeneous brain, were composed of solid 

elements.  The elements of the skull were projected 0.5 mm inward to create a dural 

layer, and a second projection created the 1.5-mm CSF layer, with solid elements 

occupying the remainder of the cranial cavity to represent the brain.  The face is 

modeled as rigid, using geometry from the Zygote infant model (Zygote Media Group, 

Inc., Linden, Utah).  Immature porcine data (Thibault and Margulies 1998; Margulies 

and Thibault 2000) were used for material properties whenever possible.  A series of 

parametric studies was performed to quantify the effects of using adult and/or estimated 

properties for the brain, CSF, dura, and scalp, and the effects were found to be minimal 

on the magnitude and pattern of stress distributions.  Decreasing the bulk modulus of 

the brain increased the predicted stresses by more than 15% and increased head 

acceleration.  Increasing the long-term shear modulus (G∞) of the brain or Young’s 

modulus (E) of the skull also increased head acceleration.  The suture stiffness, 

however, did not have a significant effect on stress distributions. 

Loading was applied using a rigid, flat impactor with a velocity equal to that 

measured on the child restraint system (CRS) during CRABI tests replicating real-world 

crashes.  Symmetric loading to the back of head, which approximates real-world loading 

conditions during frontal impact, was used as an initial input.  The results indicated high 

stresses in the occiput.  Off-center loading conditions, representing three real-world 

cases, were then modeled.  In automotive accidents, parietal fractures can be seen, and 

it was hypothesized that loading to the occiput caused outbending of the parietal bone 

plates, resulting in fracture.  However, areas of highest stress occurred at the occiput, 
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and it was suggested that the most severe fracture would occur at the site of loading, 

while other remote fractures were possible.  Logistic regression was performed to 

estimate tolerance values from the model and the injuries from the real-world cases 

(Figure 15).  Drop tests were also simulated for comparison of acceleration time 

histories and deformation with experimental data using the CRABI dummy as the test 

subject.  In this comparison, it was seen that the model predicted shorter duration, 

greater acceleration impacts for the same test conditions.  However, the deformations 

predicted by the infant head model were smaller than those measured from the dummy 

model. 

 

Figure 15 Probability of skull fracture predicted by the Klinich model (Image: 

DeSantis Klinich et al., 2002) 

 

Detailed 6-month-old: investigation of SBS and comparison with scaled model 

Roth et al. (2007) created a complete head model from CT data of a 6-month-old 

child to study Shaken Baby Syndrome (SBS).  This model is the most detailed of all 
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currently published infant head models, including anatomical structures such as the 

skull, sutures and fontanelles, the scalp, and a layer of CSF between the skull and 

brain.  The brain was not an idealized homogenous model (like many of the other 

pediatric head impact models), including structures such as the tentorium, falx, 

cerebrum, and cerebellum. The skull, sutures, fontanelles, falx, and tentorium were 

modeled using shell elements, while the cerebrum, cerebellum, CSF, and scalp were 

modeled with brick elements.  Springs were added to represent the bridging veins, 

which may be of importance in SBS.  The constitutive laws and material properties are 

listed in Appendix 1.  

Both shaking and an impact to the occiput were simulated.  The shaking pulse 

was a 400 ms sinusoid at 30 rad/s, for one cycle duration.  Relative displacement in the 

sagittal plane was used to evaluate bridging vein strain during shaking.  The impact was 

modeled using a 3 m/s initial velocity onto a rigid wall.  The results showed that brain 

pressure and shear stress were lower during shaking than during impact, but bridging 

vein strain was equal for both cases.  However, the maximum strain was reached late in 

the shaking event compared with immediately upon impact.  Although no validation 

study was published for this model, the peak strain predicted for bridging vein strain was 

not dependent on loading mode and agreed with model predictions reported by other 

researchers (Lee and Haut 1989), according to the authors. 

In a different publication in 2008, Roth et al. compared this infant head finite 

element model (Roth, Raul et al. 2007) directly to a geometrically scaled adult head 

model with infant material properties.  The scale factor used was 0.775 in all directions, 

and the mass of the scaled model was 2.1 kg compared with 2.2 kg for the infant model.  
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Differences in inertial values were most prominent in the x-axis (anterior-posterior 

plane).  Frontal, lateral, and occipital impacts against a rigid wall at 1 m/s were 

simulated.  Comparisons between the scaled adult model and the infant model showed 

differing pressure and stress distributions and time histories for all cases, but it should 

be noted that the mesh densities were dissimilar, which would affect the model results.  

“Fracture prediction” from stress criteria resulted in differing locations for each 

simulation, with the child model predicting the more realistic crack pattern, based on 

one real-world case shown in Figure 16.  

 

 

Figure 16 Fracture prediction from a real-world case (upper), showing better 

agreement with the infant model (lower, a) than with the scaled adult model 

(lower, b) (Image: Roth et al., 2007) 
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Detailed 6-week-old infant: skull biomechanics 

Another detailed infant head model by Coats et al. (Coats, Margulies et al. 2007) 

was published in 2007.  The geometry for this model was based on MRI and CT images 

of a 5-week-old, which were used to create closed boundary contours for the outer skull 

surface.  The thickness of each skull plate was measured from CT, and the outer 

surface projected inward accordingly to create internal cranial structures.  It is not clear 

whether each skull plate had a uniform thickness or if regional thickness variance was 

applied throughout each individual bone, although the skull was modeled using shell 

elements.  The brain was modeled as homogenous and isotropic, since the model was 

developed with the intent of investigating skull injury.  A scalp was created using solid 

elements with a thickness of 3.5 mm, a value found in the literature. 

The material properties for this model were based mostly on experimental 

studies performed on piglets and humans.  For the skull, the parietal bone was found to 

be stiffer than the occiput and was modeled accordingly.  Based on the findings of 

McPherson and Kriewall (1980), a ratio of 4:1 was used to find the elastic modulus in 

the direction parallel to the bone fiber orientation, allowing for an orthotropic constitutive 

model to be employed.  Frictional contact was used, with the suture represented by 

membrane elements, the nodes of which were tied to the skull element nodes.  The 

foramen magnum was left open and allowed brain motion through its boundary. 

A series of parametric studies was performed to investigate the effects of 

changing five parameters (brain stiffness, brain compressibility, suture thickness, suture 

width, and scalp inclusion) at two or three levels.  Note that the levels did not 

correspond to normal anatomic ranges.  The model used in the parametric studies 



www.manaraa.com

27 

 

 

 

simulated a fall from a height of 0.3 m with the occiput impacting a rigid surface.  For 

input, an initial velocity was calculated as 2.44 m/s using energy conservation, and the 

model outputs examined were peak contact force, contact duration, peak principal 

stress, and maximum contact area.  The parametric study results showed that 

increasing brain stiffness or altering brain compressibility had an effect on peak stress 

and contact force parameters, as well as an effect on contact duration when 

compressibility was changed.  Although suture thickness did not affect the results 

significantly, abnormally large suture width did affect peak principal stress in the skull, 

peak contact force, and contact duration.  The authors note that this indicates a need for 

prudence when assigning brain properties, even for a skull fracture model.  Eliminating 

the sutures entirely by assigning bone properties to suture elements did not significantly 

affect the maximum stress in the parietal region. 

Validation for this model was attempted by simulating of Weber’s infant cadaver 

study (Weber 1984).  As mentioned previously, Weber dropped infant cadavers from a 

height of 82 cm onto different rigid surfaces, and observed the fracture lines.  Coat’s 

model, when given this input, predicted high stresses in the parietal-lambdoidal suture 

region where some of Weber’s fractures occurred, but the length of the fracture was not 

considered.  It is unclear as to how the impact orientation was determined for each 

case. As Weber’s study did not provide quantitative data for validation, this must be 

considered a subjective validation.  Validation of the braincase material properties was 

performed quantitatively through modeling of 3-point bending tests reported by the 

same authors.   
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The model was used to investigate fracture tolerance, based on material failure 

values found in the material property study.  Fracture in the model was assigned 

through a 3x3 element array calculation of average stress to avoid localized peak 

values in an isolated element.  Fracture was assumed to occur when the computed 

stress in those arrays exceeded the ultimate stress obtained from material failure tests 

using 0.5- to 2.5-month-old subjects.  The mean ultimate stress values of 9.4 MPa for 

occipital and 27 MPa for parietal bones were considered to be a 50% risk of fracture 

(Figure 17).  The left parietal bone had higher fracture risk because of natural anatomic 

convexity in the region of the parietal-occiptial impact simulated to emulate the Weber 

experiments.  However, the model does not predict severity or type of fracture, as crack 

propagation algorithms are not included. 

 

Figure 17 Probability of fracture predicted by the Coats model (Image: Coats et 

al., 2007) 

Older pediatric model: skull biomechanics 
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A model focusing on craniofacial impact has also been developed (Zhang, Hou et 

al. 2007).  CT scan images of a 7-year-old female were used to model frontal impact to 

the zygoma and to elucidate the role of the craniofacial sutures in pediatric facial injury 

biomechanics.  The model predicted that the immature sutures acted to reduce stress 

transmission into the deep layer of the skull.  However, the large stress gradient 

observed in the craniofacial sutures also made them vulnerable to injury due to high 

shear and tensile stresses.   

Simplified newborn parietal bone: birth deformation 

McPherson and Kriewall (McPherson and Kriewall 1980) used rudimentary finite 

element techniques to study fetal head molding during birth.  In this process, the parietal 

bone undergoes most of the deformation, and a quantitative understanding of 

biomechanics of fetal molding was desired.  Given that this model was developed nearly 

thirty years ago, it is expectedly limited by finite element and computing technology of 

the time, but the small strains and stresses justify the use of finite element theory, even 

at this elementary stage in its development. 

The geometry for this model was taken from three orthogonal radiographs, and 

using orthographic projection, a rough 3D model of the left parietal bone was 

constructed (Figure 18).  This model included 63 thin shell elements, with nodes chosen 

from anatomically relevant landmark points.  The radial mesh mirrors radial bone fibers 

seen in fetal parietal bone, and bone thickness decreased in three concentric rings from 

eminence to margins (element thickness = 0.89, 0.74, and 0.61 mm).  Boundary 

conditions attempted to eliminate possibility of overlapping parietal plates (i.e., the bone 

margins could not cross at the sagittal suture), as this does not occur during birth.  
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Material properties for the tangential modulus, E1 = 3860 MPa, and the radial modulus, 

E2 = 965 MPa, were taken from a previous study.  Because the material was considered 

orthotropic but thin, plane stress was assumed, yielding ν12 = 0.08 calculated from 

orthotropic constitutive equations and a reported adult value of ν21 = 0.28.  The loading 

profile was based on pressure transducer data during birth.  Results showed bone 

deformation, as opposed to rigid body motion, with strains from -0.0133 to 0.01 at 50% 

dilation.  The maximum membrane stress was predicted to be less than 5.5 MPa and 

bending stress less than 0.1 MPa. Validation was subjective, using kinematic trends, 

and the boundary conditions were not chosen properly, so parietal overlapping did 

occur during simulation. 

 

Figure 18 McPherson and Kriewall's infant parietal bone model (Image: 

McPherson and Kriewall, 1980) 

 

Detailed newborn: skull biomechanics during birth 

Lapeer and Prager used a static model to investigate pressure distribution on the 

fetal skull during the first stage of labor (Lapeer and Prager 2001).  Geometry for this 
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model was obtained through laser scanning of an infant skull replica, although an earlier 

paper by the same authors showed a method for creating 3D geometry of the infant 

skull using a master and slave warping technique (Lapeer and Prager 2000).  The 

resulting nonlinear model was meshed with 63,413 first-order triangular shell elements 

(Figure 19).  Variable skull thickness was employed, using the same values and 

contours as McPherson and Kriewall, with 2 mm at the skull base and maxilla and 0.57 

mm for suture and fontanelle.  A slightly modified version of McPherson and Kriewall’s 

material behavior profile was used, in which the Poisson’s ratio was defined as 0.22, 

leading to slightly different parameter values in the in-plane orthotropic constitutive 

model.  The suture material was based on fetal dura mater properties (Bylski, Kriewall 

et al. 1986): homogenous, isotropic, non-linear elastic, and incompressible hyperelastic.  

The Mooney Rivlin constitutive model was used with constants of c1 = 1.18 MPa and c2 

= 0.295 MPa.  Anisotropic and viscoelastic behavior was ignored, based on the findings 

of Melvin et al. (1970) that anatomical variation overshadows these effects.  Adult 

properties were assumed for the skull base and maxilla. 

Static radial pressures were applied based on measured normal birth pressures.  

The base of the skull and some facial nodes were constrained to prevent rigid body 

translation and rotation.  Diametral strains of -2.84% to 1.63% compared favorably to 

published clinical experiments and global deformation shape was considered 

reasonable. 
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Figure 19 Lapeer's birth model (Image: Lapeer and Prager, 2001) 

Summary 

Infant skull biomechanics and, in particular, the influence of sutures on skull 

fracture, is not clearly understood.  Although the infant head is undeniably more 

compliant than the adult head, due to the nature of the birth process, the role of this 

compliance and possible viscoelastic response warrants further study in regard to 

impact biomechanics.  It has been postulated that outbending plays a significant role in 

infant skull fracture, although this has not been confirmed with physical experiments.  

Skull fracture patterns have rarely been investigated experimentally to elucidate further 

information on the biomechanics of fracture, and the fracture locations relative to the 

impact location are unknown, as are fracture initiation and termination locations.  

Through experimental analysis, it has been seen that fracture lines occur in areas of 

high transparency.  Additional anecdotal evidence suggests that fracture lines follow the 

bony spiculae radiating from ossification centers of the infant skull bone plates, although 
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much more work is needed to confirm this experimentally.  The scarcity of pediatric 

post-mortem subjects remains an obstacle to this field of research. 

Although finite element models of the infant head have been developed, 

validation is difficult without controlled biomechanical studies.  Disregarding the level of 

validation, analysis of skull fracture has been limited to stress tolerance criteria, and no 

attempts have been made to account for crack propagation or non-uniform skull 

thickness.  Material models used in these models simplify the mechanics of the 

biological material behavior (e.g., using a linear material model to represent nonlinear 

behavior), and a complete dataset of material properties at any given age, much less 

throughout the stages of development, is not currently available.  Further finite element 

models should incorporate some consideration for bone morphology and more accurate 

material models, as well as crack propagation algorithms. 
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CHAPTER 3 

THEORY AND DEVELOPMENT OF PIGLET HEAD SURROGATE MODELS 

Objective 

The objective of this chapter is to develop a piglet surrogate model for use in 

predicting patterns of pediatric skull fracture.  The literature will be reviewed to justify 

the use of a piglet surrogate, and to compare experimentally determined human infant 

material properties and biomechanical response with those found using the piglet 

surrogate.  Mechanical factors, such as rate dependence and viscoelastic behavior, will 

be discussed in the selection of an appropriate constitutive model for the skull bones.  

The development of the finite element model will be outlined and preliminary, pre-

validation results presented. 

Review of the Literature 

Pigs as surrogates  

The piglet has long been used as an experimental surrogate for pediatric studies 

due to similar material properties and internal organ position (Prasad and Daniel 1984; 

Aerssens, Boonen et al. 1998; Kent, Stacey et al. 2006).  In the case of the current 

study, piglets were chosen as a surrogate based on cranial vault shape and material 

property compatibility.  In addition, the pig has been used to study brain injury because 

of similarities on the tissue level (Meaney 1995). 

Dobbing (1964) proposed an age equivalence between human and pig based on 

chemical factors in brain development, suggesting one week of porcine life is equal to 

one month of human life.  This has commonly been used for young children only, and it 

is not clear where the correlation dies off.  In a study of pediatric brain material 
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properties, Thibault and Margulies (1998) used 2- to 3-day-old piglets to represent 

infants under one month of age and 1-month-old piglets to represent 4-year-old 

toddlers.  However, an age-dependent brain property study by Prange et al. (1999) 

indicated that a one-year-old pig (which would be equivalent to a four-year-old child 

according to Dobbing’s criterion) had brain properties very similar to that of an adult 

human.  If Dobbing’s equivalence is accurate for infants, it is clear that the relationship 

between porcine age and human age is nonlinear and should be used with caution. 

For equivalence on a skeletal development basis, no historical literature explored 

the relationship. Margulies and Thibault (2000) found that the elastic and rupture moduli 

for a limited sample size of 2-3 day old piglet skull samples was consistent with human 

samples from birth to 6 months. A newer study by Baumer suggested that, based on 

piglet parietal bone bending data, 1 day in the piglet correlates with 1 month in the 

human for ages up to 10 months. However, neither of those studies evaluated structural 

morphological similarities, which can strongly affect the overall biomechanics of the 

skull. Further research is needed before an age equivalency can be proposed with any 

degree of confidence. At this time, while the piglet can be considered an appropriate 

surrogate for child head injury, translating the findings of such studies directly to the 

human should be done with caution. Instead trends seen in piglet studies can guide 

future studies of pediatric cadavers so that state-of-the-art computational models can be 

developed for each more complex research. 

Experimentally-determined pediatric skull and suture material properties  

In order to fully evaluate the biofidelity of piglets as an infant surrogate, it is 

paramount to understand the material behavior of the tissues in addition to the global 
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biomechanical response. Comparison of human data to piglet data can help to 

determine whether a direct age correlation is appropriate, or to begin to develop more 

realistic scaling laws that take into account developmental, as well as geometric 

changes that occur with age. This is currently a deficiency in adult to child scaling, due 

to the incomplete dataset available in the literature for children. Piglet, or other animal, 

surrogates can help fill this gap, although that is beyond the scope of this dissertation. 

Human infant skull and suture material properties – A thorough review of 

pediatric material property experiments, conducted on human samples or animal 

surrogates, examined the critical shortages of such data evident in the literature 

(Franklyn et al. 2007).  Kriewall et al. (1981) measured the ash content of fetal cranial 

bone in order to determine if the positive correlation found between elastic modulus and 

ash content in adult bone (Mather 1968; Currey 1969) was valid for infant bone.  Their 

results showed a large spread in ash content data, reflecting the dynamic nature of 

mineralization and ossification in the developing fetus.  Although a positive correlation 

was seen, a linear estimation yielded an r value of only 0.56.  However, when 

examining the correlation between age and ash content, an r value of 0.82 was 

calculated. Kriewall et al. concluded that, for pediatric specimens, structural 

development is more likely to account for an increase in elastic modulus than ash 

content. 

Figure 20 and Table 2 summarize the results from the infant skull bone studies, 

and a detailed description of each experiment can be found in the Franklyn et al. (2007) 

publication. 
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Figure 20 Graphical summary of infant elastic moduli, as reported in literature 

Table 2 Summary of infant skull material property experiments 

Reference Specimen 

Age 

Test Type and 

Rate 

Bone 

Sample 

Sample 

Orientation 

 

(McPherson 
and Kriewall 
1980) 

24-40 
weeks 
gestation 

3-point bending 
0.5 mm/min 

Frontal and 
parietal 

Parallel and 
perpendicular 

Pre-term -> E = 1650 MPa 
(parallel), 145 MPa (perp.)  
Term -> E = 3880 MPa 
(parallel), 951 MPa (perp.)  

(Kriewall, 
McPherson et 
al. 1981) 

24-42 
weeks 
gestation 

3-point bending 
0.5 mm/min 

Frontal and 
parietal 

Parallel E = 3103 MPa (µ = 656) 

(Kriewall 
1982) 

20-42 
weeks 
gestation 

3-point bending 
0.5 mm/min 

Parietal Parallel and 
perpendicular 

 

(Runge, 
Youssef et al. 
1998)* 

3-15 
months 

3-point bending 
18-1800 mm/min 

Parietal and 
occipital 

Unknown E= 880 MPa, E = 47 MPa,  
σyield = 12 MPa, σult = 18.5 
MPa, εult = 0.126 

(Margulies 
and Thibault 
2000)** 

25 weeks 
gestation 
to 1 week 

3-point bending 
2.54 mm/min 

Parietal Perpendicular E = 434.46 MPa, σult = 10.34 
MPa, U0 = 0.0620 N/mm 

3-point bending 
2540 mm/min 

Parietal Perpendicular E = 261.9 MPa, σult = 7.5 
MPa, U0 = 0.0031 N/mm 

6 months 3-point bending 
2.54 mm/min 

Parietal Perpendicular E = 2155.55 MPa, σult = 86.7 
MPa, U0 = 0.1613 N/mm 

3-point bending 
2540 mm/min 

Parietal Perpendicular E = 3127.05 MPa, σult = 71.7 
MPa, U0 = 0.4361 N/mm 

(Jans, Van-
Audekercke et 
al. 1998) 

7-11 
months 

3-point bending 
30 mm/min 

Parasagittal Unknown E = 1.7-3.3 GPa, 
σyield = 115-235 MPa*** 

*Properties calculated using inverse finite element method 
**Properties calculated using beam theory appropriate for small deformations and uniformity; 

results may have significant error 
***Calculated using 3-layered skull assumption, with 2:1 ratio of cortical to diploё 
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McPherson and Kriewall (1980) and Kriewall (1982) both concluded that the 

elastic modulus of infant frontal and parietal bones was dependent on fiber orientation.  

Independent of gestational age, the moduli of samples with parallel orientation (with 

respect to the suture) were significantly higher than that of the perpendicular samples.  

However, subsequent researchers investigating infant skull bone material properties 

have not considered this in their study designs.  

In a similar study, Kriewall et al. (1981) measured the ash content of fetal cranial 

bone in order to determine if the positive correlation found between elastic modulus and 

ash content in adult bone (Mather 1968; Currey 1969) was valid for infant bone.  Their 

results showed a large spread in ash content data, reflecting the dynamic nature of 

mineralization and ossification in the developing fetus. Based on r-values, Kriewall 

concluded that, for pediatric specimens, structural development is more likely to account 

for an increase in elastic modulus than ash content. 

Although suture could not be harvested from post mortem human subjects by 

Margulies and Thibault (2000) due to standard autopsy procedures, Runge et al. (1998) 

procured samples from surgical waste.  Coronal, sagittal, and metopic suture were 

excised from 3- to 15-month-old patients and tested in tension at 18-1800 mm/s.  These 

samples exhibited slightly nonlinear behavior (Figure 21) and were much stiffer than 

bone.  When measuring the most linear portion of the suture curves, the authors 

estimated an average stiffness 189 N/mm for the 3-month-old subject. 
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Figure 21 Force-displacement curves for infant at 30 mm/s, reproduced from 

Runge et al. (1998) 

 

Piglet skull and suture material properties – To compare the properties of infant 

cranial bone with the bone and suture of the piglet, Margulies and Thibault (2000) 

employed 2- to 3-day-old piglets.  Long, rectangular samples 3-5 mm by 20-25 mm 

were harvested parallel to the sagittal suture and spanning the coronal suture.  Two 

types of test were conducted on the piglet samples: 3-point bending with an adjustable 

span and tension to failure.  The 3-point bending tests were performed at the same 

displacement rate as the human sample tests (2.54 and 2540 mm/min), but the tensile 

tests were performed only at the lower rate due to excessive vibration in the 

servohydraulic testing machine.  

The results of the bending tests at the low rate produced similar elastic moduli for 

both tests (within the standard error), but higher failure stress and failure strain energy 

than the tensile tests, as shown in Figure 22.   
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(A) 

(B) 

(C) 

Figure 22 Comparison of bending and tension results, from Margulies and Thibault (1998) 
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Note that there was no statistically significant difference between bone and 

suture for failure stress or strain energy.  However, based on the results of the tension 

tests, it was determined that bone is stiffer than suture, and suture yields and fails at 

higher strains than bone, as seen in Table 3.  In this study, the elastic modulus and 

failure stress were found to be rate dependent for both bone and suture materials, but 

the strain energy to failure (U0) was not. 

Table 3 Porcine tension test results, from Margulies and Thibault (2000) 

 σyield 

(MPa) 

σult 

(MPa) 

εyield 

(mm/mm)* 

εult 

(mm/mm)* 

E 

(MPa)* 

U0 

(N/mm
2
) 

Bone 5.3 ± 0.9 10.6 ± 1.6 0.0079 ± 0.0010 0.0341 ± 0.0069 809.0 ± 118.9 0.0075 ± 0.0022 
Suture 5.7 ± 0.9 7.7 ± 0.8 0.0422 ± 0.0040 0.0664 ± 0.0078 171.5 ± 32.5 0.0033 ± 0.0005 

* Indicates statistical significance (p < 0.05) 

Another study using 3- to 5-day-old piglet skull and suture samples was 

conducted at higher rates (Coats and Margulies 2006).  The 3-point bending tests were 

performed using a specialized drop stand to achieve rates of 2.16 and 3.67 m/s 

(nominal speeds of 2.45 and 4.24 m/s lowered by frictional resistance).  These loading 

rates were not consistent, due to the nature of drop stand procedures, and the impactor 

mass was not reported, though the mass will affect results significantly.  The results are 

reported in Table 4 .  In this study, bone exhibited a higher elastic modulus and ultimate 

stress than suture, but lower ultimate strain.   

Table 4 High speed porcine bone and suture properties, as reported by Coats and 

Margulies (2006) 

  E 

(MPa) 

σult 

(MPa) 

εult 

(mm/mm)* 

2.16 

m/s 

Bone 158.9 ± 15.7 10.8 ± 1.0 0.099 ± 0.010 
Suture 57.1 ± 8.2 6.0 ± 0.6 0.176 ± 0.018 

3.67 

m/s 

Bone 165.1 ± 18.3 11.2 ± 1.2 0.104 ± 0.011 
Suture 83.8 ± 9.9 7.7 ± 0.8 0.141 ± 0.021 
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Comparing the results of the high speed study (Coats and Margulies 2006) with 

the lower speed study (Margulies and Thibault 2000), initiates questions about rate 

dependence in porcine bone and suture.  Figure 23 graphically shows the rate 

dependence seen in the lower speed study, and a lack of rate dependence in the higher 

speed study, although direct comparison can be misleading due to differing test 

methodologies. Further research is needed into the rate dependence of developing 

bone, as it may behave differently than adult bone in any species.   

 

Figure 23 Rate dependent elastic moduli in piglet skull and suture 

Older piglets were tested by Baumer et al. (2009), and these material property 

data were used in the current study in order to examine age related changes with the 

developed computational models. Bending tests were performed at a loading rate of 25 

mm/s in order to identify material property behavior and failure parameters of small 

rectangular samples of piglet skull bone in piglets aged 7 to 21 days. Although other 

researchers have employed 3-point bending for this purpose, a 4-point bending 

apparatus (shown in Figure 24A) was chosen for this study in order to avoid direct 

loading to the suture (which can affect material property calculations). Two sample 

types were tested and shown in Figure 24B: pure bone and bone-suture-bone. 
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A             B 

Figure 24 (A) Bending fixture used to determine elastic bone and suture 

properties and (B) described beam samples [graphic reproduced from Baumer 

(2009), photos provided by Timothy Baumer, Orthopaedics Biomechanics 

Laboratory, Michigan State University] 

 

Strain (ε), elastic modulus (E) and internal energy (U) were  calculated using the 

following beam theory equations: 

 
L

2yα
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
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2EI

2
*M

U  

Note that these equations are appropriate for a beam of uniform thickness and 

homogeneous material, and the angle of deflection, α, is measured at the two impactor 

contact points. In this case, thickness was averaged from three equally spaced points 

along the beam, some inherent calculation error is expected.  As per Currey (1999) and 

others, a bending test depicts two mechanical properties simultaneously: material and 

structural, and it is difficult to separate the two. In other words, it is difficult to determine 

to what extent factors such as porosity, mineral content, or microstructural orientation of 

the bone cells play a role in bone behavior and fracture. 

Figure 25 illustrates the elasticity results graphically by age group, wherein 

differences between suture and bone moduli are only statistically significant after 14 

days. A slight decreasing trend in bone modulus with age can be seen, but is not 
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statistically significant. Baumer compared this trend to post-natal human data published 

by Margulies and found that there was no significant change up to six months of age in 

infants when pre-natal specimens are excluded. An increase in bone porosity with age 

was noted and related to structural development of the diploë, but mineral content was 

not examined. 

 

 

Figure 25 From Baumer’s thesis (2009), indicating a significant difference 

in bending modulus between bone and suture specimens in the younger piglets, 

but not in the older age group 

 

Other findings from these bending tests are that the orientation of the bone 

samples does not affect results significantly.  This is consistent with some published 

human data, but not other infant and piglet data (such as Margulies and Thibault, 2000).  

However, the two sample types (parallel and perpendicular) were taken from the same 

regions in all piglet specimens.  Regional differences were not considered, and also 

note that all bone samples were taken from the parietal bone, neglecting the possibility 

that different bone plates could have different properties which affect the overall 

biomechanics of head compliance and deformation. 

Comparison of human data to piglet data – As seen in Chapter 2, there is wide 

variation in human infant skull material property data.  In the parallel fiber orientation, at 
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quasi-static rates, the elastic modulus is reported to vary between approximately 1 and 

5 GPa.  In the perpendicular orientation, 100 MPa to 2 GPa is reported for low rates.  

The higher speed (42.3 mm/s) bending test data for piglets from Margulies and Thibault 

(2000) also fall within these ranges, although their neonate data were at the lower end 

of the range, along with the data from Runge et al.’s (1998) higher speed tests.  The two 

studies with older infants (Jans et al. 1998; Margulies and Thibault 2000) matched 

better with the quasi-static perpendicular orientation data than with the quasi-static 

parallel orientation data, although Margulies and Thibault used parallel orientation and 

Jan’s orientation is unknown.  Because 8-10 GPa is normally considered appropriate for 

skull material in the adult, it is clear that the developing human skull has age-related 

differences in terms of material properties. At the current time, the change in material 

properties as any species matures has not been fully quantified or characterized from 

birth to adulthood, so it is difficult to determine a correlation metric. However, as 

mentioned previously, one possible correlation has been postulated from bending 

rigidity data (Baumer et al., 2009), though the authors also noted that the change in 

elastic modulus by age did not show statistical significance in the age range tested in 

their study. Further research is required before results from piglet surrogate tests can be 

directly translated to human. 

The little amount of suture material property data available does not allow 

researchers to draw any conclusions in comparison. The human suture data published 

by Runge et al. (1998) indicates that human infant suture is stiffer than bone, but using 

the piglet surrogate, Margulies and Thibault (2000) found the opposite trend.  Both 

studies elicit concern in their findings. Runge’s study only reported data from one 
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subject, and used two different methods to calculate the properties for bone and suture.  

Margulies and Thibault tested both materials in both 3-point bending and tension, but 

found significant differences in their calculated material properties based on the test 

method.  In addition, the beam theory equations used by Margulies and Thibault (2000) 

and Baumer et al. (2009) are appropriate for uniform specimens subjected to small 

displacements. In the Margulies and Thibault study, it is acknowledged by the authors 

that their suture samples exceeded the 5% strain maximum associated with these 

equations, but the amount of error may be significant and could not be calculated.  

Further research is needed on suture properties in both species to determine both 

appropriate modeling techniques and material properties. 

Fracture mechanics and failure modes 

In an engineering material, there are several modes of failure that can occur: 

• Elastic instability - buckling 

• Tensile instability - necking 

• Large elastic deformation - jamming 

• Gross plastic deformation – yielding 

• Fracture 

These can also occur in combination, and in order to properly model a structure’s 

behavior, the combined failure mode should be understood. Modeling just one failure 

mode may not produce suitable results. In this work, focus will be on fracture, as the 

bending failure modes of partially ossified bone (as in developing pediatric subjects) 

have not been thoroughly investigated experimentally. 
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Fracture mechanics theory is clear that using a purely elastic assumption, stress 

at the crack tip is mathematically infinite (see Figure 26). As a practical concern, this is 

clearly not possible, and therefore any real-world elastic material displays a small plastic 

zone near the crack tip. For the purposes of finite element modeling, this is important in 

assigning a proper failure criterion. If this zone is relatively small compared to the entire 

crack length, then an elastic assumption may be employed. Two criteria can be used at 

the crack tip to determine whether or not propagation will occur in linear elastic fracture 

mechanics. K is a local criterion related to local stress at the crack tip, and G is a global 

criterion based on strain energy release. As the crack lengthens, this assumption 

becomes increasingly inaccurate and new fracture criteria will be needed which 

consider elasto-plastic fracture mechanics. Another consideration in biological 

mathematical modeling of fracture must be natural inhomogeneities, analogous to 

manufacturing flaws in man-made materials. These affect both crack initiation and 

propagation. 

 

Figure 26 Graphical summary of fracture mechanics theory 
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From a biomechanics standpoint, the most common type of skull fracture is linear 

fracture.  In these cases, the mechanism of injury is termed “outbending,” as described 

by Gurdjian et al. (1970).  The impacted area is deformed inward, while, due to the 

elastic nature of the skull, areas distal to the impact site bend outward.  Bone can be 

considered transversely isotropic with weakness in tension, so fractures can occur in 

regions of outbending.  Gurdjian hypothesized that linear skull fractures initiate at the 

point of outbending and propagate towards both the impact site and the area directly 

opposite the impact site. 

In some types of impact, it has been shown that many seemingly important 

parameters may not affect resultant skull fracture force (Allsop, 1993; Nahum et al., 

1968; Schneider and Nahum, 1972).  These parameters include: onset loading rate, 

pulse duration, strain rate, bone mineral content, and state of preservation.  However, 

bone thickness has been shown to affect fracture tolerance (Allsop, 1993; Melvin et al., 

1969).  Although no systematic studies have been performed to quantify the effect of 

local skull thickness on fracture pattern, there have been studies that suggest fracture 

lines follow areas of thinness or that skull thickness does affect fracture pattern 

(Willinger, 2000; Weber, 1985). 

The basis of the finite element method is to describe a physical system by 

mathematical parameters and to approximate the behavior of the system through 

solving a series of partial differential equations using the framework of linear algebra.  

This method allows a researcher to depict a physical system using discretization, 

limiting the possible degrees-of-freedom in the mathematical model to a non-infinite, 

solvable set.  
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Skull fracture can be modeled using a threshold failure criterion (strain, stress, or 

strain energy are common). Once an element meets this threshold, it can be 

mathematically handled in different ways: removal of the element from the model or 

assignment of null stiffness.  Due to the discretized nature of a finite element model, 

either one of these changes the structural stability of the model by removing that 

element’s strength from the stiffness matrix, however, the mass is retained at the nodes 

in the case of element elimination so that the overall mass of the system is unaffected. 

The energy balance is also affected. 

Experimental studies of skull bone have shown that architecture and bone 

thickness to be important parameters in fracture tolerance (Allsop, 1993; Melvin et al., 

1969).  Simplifications are made in finite element modeling to represent this composite 

structure as layers of 2D or 3D elements.  Material assumptions are also made, as the 

bone is physically inhomogeneous, with anisotropic and nonlinear behavior.  Generally, 

models of cortical bone assume isotropy and even linearity, as the degree of 

nonlinearity is relatively small.  Failure thresholds reported in the literature are based on 

engineering stress or strain calculated using theoretical equations, not accounting for 

inter- or intra-specimen variation.   

Bone behavior is viscoelastic, and its failure can be described using several 

criteria, most commonly maximum principal stress (Seely and Smith, 1966).  In this 

case, elongation along the loaded axis is proportional to the maximum principal stress.  

The material has lower resistance against shear in this configuration and can fail along 

a non-orthogonal axis; as such, maximum shear strain becomes the primary failure 

mode.  Therefore, strain is considered the better predictor of bone fracture, and material 
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property tests from the 1970’s reported failure strains of 0.33-0.9% (Wood, 1970; 

Hubbard, 1971) for adult human skull bone.  Piglet skulls have been tested by one 

group of researchers (Margulies and Thibault, 2000; Coats and Margulies, 2006) and 

3.4% was reported for quasi-static rates, while 10% was reported for dynamic rates as 

detailed earlier in this chapter.  Without further study, it is difficult to determine whether 

these discrepancies are related to species, age, bone architecture, loading rate, or test 

condition.  Finite element models of the infant head generally have estimated failure 

strains around 3%, but the Coats model is much lower, although not under 1%. 

Additionally, because none of the published infant finite element models involved mesh 

convergence studies, failure strain estimated from model predictions is mesh-dependent 

and should not be applied to other models without due consideration.  These models do 

not generally use element elimination to represent failure, instead predicting areas in 

which fracture is more likely based on strain contours.  As stated in the review, pediatric 

finite element models have also used stress-based criteria to determine likely fracture 

sites. If bone is modeled as elastic, this assumption is valid, but further research may be 

needed when more complex constitutive equations are used to describe bone behavior.  

Methods 

Geometry and mesh generation 

Baumer (2009) reported that the structural morphology of the piglet bone 

specimens tested experimentally showed a distinct, continuous trabecular layer in 

piglets over 14 days old. Additionally, while the bone stiffness increased linearly with 

age, the suture stiffness only increased statistically significantly after 14 days, which 

affects the global stiffness of the cranial vault. Because this is obviously not an 
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instantaneous occurrence, due in part to anatomical and developmental variation in 

piglet specimens, two models will be developed representing piglets with a buffer of 

seven days from this cutoff point (7 and 21 days of age).   

The geometry necessary for FE model development was obtained through CT 

imaging and 3D reconstruction. A 0.5 mm resolution spiral CT scan (Siemens, Detroit 

Receiving Hospital, Detroit, Michigan) was performed axially on a 21-day-old intact 

piglet head and exported in DICOM format. This resolution was not sufficient for an 

accurate depiction of the thinner 7-day-old piglet head and a microCT (built in-house at 

Henry Ford Hospital, Detroit, Michigan) was employed for a second scan in order to 

capture multiple voxels through the skull thickness for an accurate reconstruction. One 

region of interest (a cross-section of the parietal bone) is shown in Figure 27 which 

shows that the skull thickness ranges from 1.6 to 3.4 mm at 21 days but 0.5 to 1.3 mm 

at 7 days. However, the 90 µm resolution microCT scan could not be performed on the 

entire piglet head, due to bore size and field-of-view limitations. Instead, a post-impact 

dried skull was imaged and reconstructed through post-processing. Given the nature of 

the physical reconstruction of the post-impacted dried skulls, glue introduced into the 

sutural space will make the sutures appear wider than they are in reality. Observation of 

fresh, intact pig skulls indicates that the suture width in a 7-day-old piglet does not seem 

to be significantly different from the 21-day-old. This phenomenon does not correlate 

with infants, and the implication thereof will be discussed in the conclusion of this 

dissertation. 
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Figure 27 90 µm resolution cross-sections of the parietal bone (left = 21 

days, right = 7 days) 

For 3D reconstruction, the images were imported into Mimics 13 (Materialise, 

Leuven, Belgium). Thresholding, region-growing, and other segmentation techniques 

were applied to reconstruct the skull bones (see Figure 28). The inner and outer 

surfaces of the skull were converted to STL format, in which the surface is represented 

by connected 2D triangles in 3D space. The inner and outer surfaces were separated, 

and the foramen magnum and all other anatomical orifices were filled to preserve 

intracranial pressure in simulation. Manual smoothing algorithms were utilized to 

prepare the outer skull surface for meshing, balancing anatomical accuracy with 

curvatures suitable to minimizing warpage during meshing. 

A B 

Figure 28 7-day-old (A) and 21-day-old (B) piglet skull 3D reconstructions 
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The final outer skull STL file was exported to Hypermesh 9.0 (Altair, Troy, 

Michigan), where the triangular surface mesh was manually converted into 4-node 

quadrilateral shell elements on the parietal bone, with care taken to preserve element 

quality. The Hughes-Liu shell element formulation was used in this model. Shell 

elements were chosen because they can support both bending and transverse shear, 

related to the hypothesized mechanism of injury in this case.  Both fully and reduced 

integration schemes were investigated, but for this model, they were not found to show 

significant difference in results. The remaining skull bone plates- including the occiput, 

frontal bones, temporal bones, nasal bones, and maxilla- were meshed using 

automated optimization and mixed elements in Hypermesh. Through convergence 

testing, a mesh size of 0.5 mm was chosen. Elements were selected to represent the 

areas of sutural interdigitation, and the edges of these lines were smoothed manually.  

Summaries of the meshed models are shown in Table 5. 

Table 5 Piglet skull and suture meshes 

7-day-old 

(7DO) 

21-day-old 

(21DO) 

 

 

Total shell elements = 51,640 

Total solid elements = 62,490 

Average element size = 0.5 mm 

>10% warpage = 5% 

<0.6 Jacobian = 1% 

Initial timestep size = 3.58 e
-6

 

Total shell elements = 93,860 

Total solid elements = 271,096 

Average element size = 0.5 mm 

>10% warpage = 3% 

<0.6 Jacobian = 2% 

Initial timestep size = 3.53 e
-6
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Material model theory and failure criterion   

Based on the literature review and the data reported by Baumer et al. (2009), 

several constitutive models were considered.  A typical force-displacement curve from 

Baumer’s 4-point bending experiments is shown in Figure 29.  From this graph, no 

plastic region is evident, though a toe region and an elastic behavior can be seen, as 

well as some evidence of strain softening. Based on published studies regarding the 

biomechanics of bone fracture, evidence of yielding and plastic behavior, as well as rate 

dependence, should be expected.  It is unclear if the lack of a plastic region is an artifact 

of test methodology or a consequence of pediatric growth and development.  Other 

researchers have observed that although the bone may appear brittle, energy 

absorption does occur through plastic flow beyond the elastic limit (Wainwright, 1979), 

so it is likely that the testing mode’s inability to separate structural and material effects is 

the cause of this inconsistency, as described by Currey (1999). 

 

 

Figure 29 Force-displacement curve for typical beam specimen [provided 
by Tim Baumer, Michigan State University] 
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As discussed in Chapter 2, bone consists only partially of mineral components.  

Especially in a developing skull, there is a significant contribution to material response 

from collagen.  If one makes the assumption that both of these major components 

display purely elastic behavior, but with different moduli and ultimate stress/strain, 

Figure 30 shows what the typical stress-strain curve would be expected to look like.  

After failure of the mineralized bone, the collagen matrix would be expected to support 

some loading before failure (Burstein, Zika et al. 1975).  As this is not what happens, it 

should be understood that bone itself is not an elastic, brittle material. 

  

Figure 30 Hypothetical bone failure response [Reproduced from Burstein et al. 
(1975)] 

 

The mineral content of the piglet bones was not measured in the MSU tests, but 

it can be assumed that the growth of the skull plates at these ages indicates some level 

of mineralization.  In Burstein et al. (1975), as well as other published literature, cortical 

bone was shown to exhibit elastic-plastic properties, with failure occurring in the plastic 

region.  Partial demineralization of the bone did not affect the general shape of the 

curve, but rather only the elastic modulus and yield stress.  Even the ultimate strain 

remained unchanged until complete demineralization, at which point it increased 

significantly. 
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Two constitutive models were chosen based on the above information and the 

availability and compatibility of material models in LS-DYNA v971. Of the available 

material failure models that were compatible with shells, MAT24 was chosen to 

represent the elastic-plastic behavior of the bone without orthotropic effects. MAT3, a 

similar model, has been used to model failure in other biomechanical studies (Li et al., 

2009; Guan et al., 2011). However, the failure algorithms in LS-DYNA do not allow for a 

separate tensile and compressive strain failure threshold, which was postulated to be 

relevant to the failure mode of the piglet head (i.e., outbending). Even in the absence of 

the outbending phenomenon, the mechanics of bending dictate that the material will be 

in compression on the outward bending surface and in tension on the inward bending 

surface, and separate criteria would still be relevant. 

The observed fracture patterns in the experiments were seen to be at the bone 

plate margin (near the edges of the parietal bone), as opposed to under the impactor.  It 

was hypothesized that this was a bending phenomenon, similar to the outbending that 

has been reported elsewhere.  Bone is more resistant to fracture in compression, due to 

the effects of Wolff’s law (which states that bone adapts to repeated or continuous 

loading so as to provide a stronger resistance), so failure is much more likely to occur 

due to tension. This may be relevant to the skull in that intracranial pressure and 

cerebral convolutions provide a constant force, though small, that the cranial skull 

bones must resist. In infants, these convolutions, which give the brain surface its 

characteristic uneven appearance, begin to develop around the age of five months 

(Hofman, 1989) and contribute to the shape of the inner skull surface. Bone deposition 
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and loading, especially during development, will affect the compression/tension failure 

thresholds regionally in the brain case. 

There is an extension of the elastic-plastic model with failure (MAT24), which 

allows separate plastic stress-stress curves to be defined for tension and compression 

(MAT124). Although only one failure criterion value can be defined in LS-DYNA, 

changing the yield stress and/or tangent modulus can delay or prevent element 

elimination in areas experiencing compressive mean stress (e.g., in direct contact 

areas).  The plastic regions were defined artificially (see Figure 31) assigned to 

strengthen the bone in areas of compression (i.e., the impact point at the center of the 

parietal bone), as no data appropriate to regional dependency were generated as a part 

of the current study. The other bones were modeled as elastic without failure for 

simplicity. 

 

Figure 31 Plastic region behavior assigned in MAT124 to strengthen impact point 

  In this constitutive model, effective plastic strain is defined as the failure criterion.  

When a certain strain parameter reaches its threshold, the element is deleted from the 
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simulation, with the mass retained at the nodes.  The εp of each element at each time 

step is calculated based on the following, explained more fully in the LS-DYNA user 

manual: 

    

It can be seen that the selection of tangent modulus and yield stress contributes 

greatly to the numerical development of plastic strain within the shell elements.  One 

reason that the numerically defined failure strain differs from the experiments is that 

microcracks and other incomplete fractures are not considered.  Additionally, while 

crack propagation is determined by strain energy vectors, these are not be well-defined 

in the context of MAT124.   

Another material model was also utilized to investigate the efficacy of an energy-

based criterion. MAT105 is an elastic viscoplastic material model combined with 

continuum damage mechanics to define element deletion thresholds (Berstad et al., 

1999). An effective plastic strain is defined at which material softening begins, the so-

called ‘damage threshold’ rd. Critical damage progression is defined through the strain 

energy release rate (a function of Von Mises stress) as: 
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The value of S is a damage material constant with a default value of 1/200 of the initial 

yield stress. 

 The constitutive equations defining element deletion in this material model are 

obviously more complex than the effective plastic strain threshold in MAT124. In 

addition to the continuum mechanics damage criterion, elements assigned MAT105 can 

also be given an effective plastic strain threshold, if the critical damage value is not 

reached. In this study, that option was not utilized in order to avoid the appearance of 

confounding effects during failure criteria evaluation.  

Boundary conditions  

Data generated from experimental tests conducted at the Orthopaedic 

Biomechanics Laboratory (OBL) at Michigan State University (MSU), and published in 

Baumer et al. (2010), was used for model validation.  More details are available in the 

literature, but briefly, a drop stand was used to produce non-catastrophic failure leading 

to linear skull fractures. The drop stand developed at OBL for blunt force impact studies 

on in vivo articular cartilage (Haut et al., 1995) was used to control the impactor in this 

series of experiments (Figure 32). The impactor was fixed to the carriage of the drop 

stand, which traveled vertically along a stainless steel shaft via high precision roller 

bearings. The piglet head was potted in air-hardening epoxy (Fibre Strand, Martin 

Senour Corp., Cleveland, OH) and oriented in such a way that the center of the parietal 

bone is in the line of impact. In order to assure a single impact, an op-amp comparator 

circuit initializes an electromagnetic solenoid to catch the rebounding impactor when the 

load returns to zero after a load spike. A load cell underneath the intact head recorded 

global impact force. 
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Figure 32 OBL Drop Stand [images provided by Timothy Baumer, 
Orthopaedic Biomechanics Laboratory, Michigan State University] 

 

The piglet skull model was fixed in six degrees-of-freedom opposite the impact 

site. A layer of solid elements representing the compliant skin between the relatively 

rigid potting material and the flexible skull was incorporated to allow impact energy 

absorption consistent with the experiment. The aluminum (elastic, E = 70 GPa) impactor 

was modeled with a 5 mm thick layer of brick elements on the impactor surface to 

represent the skin of the pig (elastic, E = 100 MPa).  Using this technique simplifies 

numerical contact interfaces that must be utilized in FEM.  Validation of contact area for 

a given impact energy was necessary to ensure reasonable computational models for 

fracture pattern prediction. 

The center of impact was located at the center of the parietal bone plate (Figure 

33). Based on the drop heights reported by Baumer (2009), impact velocity for each 

piglet model was calculated using the following basic physics equation and reported in 

Table 6: 

� =  �2�ℎ 
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Table 6 Loading conditions 

Impactor Mass 

(kg) 

 

Drop Height 

(m) 

Impact Velocity 

(m/s) 

Impact Energy 

(J) 

7DO  1.7 0.20 2.0 3.3 

21DO  1.9 0.60 3.4 11.2 

 

 

 

Figure 33 Impact point at center of parietal bone marked by white cross 

Results  

Convergence study   

 In order to confirm that the use of thin shell elements to support the bending load 

modality in this study would be appropriate, a simple mechanics problem was modeled 

to investigate the convergence of thin shells with varying edge length to thickness 

ratios. A simply supported, 10-cmx10-cm 2-mm thick square plate was subjected to a 

10 N static load and solved using implicit methods in LS-DYNA. The edge length of the 

uniform, quadrilateral mesh was varied from 5 to 0.3125 mm by a factor of 2. The 

results are shown in Figure 34, convergence on the theoretical solution. An element 

size of 0.5 mm, with a thickness four times greater was well within acceptable 
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convergence range, indicating that thin shells 

relatively thick piglet skull bone plates.

Figure 34 Convergence of a simplified plate problem with the theoretical solution

the dashed line represents a 1:4 edge length to thickness ratio with 0.5

 

Simulated fracture prediction 

  Fracture patterns – The laboratory tests produced highly consistent fracture 

patterns within the age groups tested

These data use a geographical information systems

lines from several piglets to a representative geometry for comparison. High

video observation indicated that the 

propagated towards the center of the parietal bone. Despite this, 

the fracture lengths display a wide variance, with no trend by age and ca

reliably for comparison with fracture prediction models.
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convergence range, indicating that thin shells are appropriate for modeling even 

relatively thick piglet skull bone plates. 

 

Convergence of a simplified plate problem with the theoretical solution

resents a 1:4 edge length to thickness ratio with 0.5

length 

 

The laboratory tests produced highly consistent fracture 

patterns within the age groups tested in high energy impacts, as shown in 

These data use a geographical information systems (GIS) technique to map the fracture 

lines from several piglets to a representative geometry for comparison. High

video observation indicated that the fractures initiated remotely from the impact site and 

propagated towards the center of the parietal bone. Despite this, Figure 

the fracture lengths display a wide variance, with no trend by age and ca

fracture prediction models.  

appropriate for modeling even 

Convergence of a simplified plate problem with the theoretical solution- 

resents a 1:4 edge length to thickness ratio with 0.5-mm edge 

The laboratory tests produced highly consistent fracture 

, as shown in Figure 35. 

technique to map the fracture 

lines from several piglets to a representative geometry for comparison. High-speed 

from the impact site and 

Figure 36 shows that 

the fracture lengths display a wide variance, with no trend by age and cannot be used 
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Figure 35 Accumulated GIS fracture location data showing likely areas of fracture 

[provided by Nicholas V. Passalacqua, Department of Anthropology, Michigan 

State University] 

 

 

Figure 36 Characteristic fracture lengths reported by and reproduced from 

Baumer et al. (2010) – note very large variance and lack of distinguishable trend 
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 Failure criterion – With these initiation points in mind, the two failure criteria, 

strain and strain energy, were compared in 21-day-old pilot models. These models were 

given similar elastic governing behavior and impact conditions, but the plastic behavior 

and failure thresholds were necessarily different and were not selected to produce 

optimal fracture patterns at this stage. (This is explored further in Chapter 4.) For the 

pilot models, plastic behavior was dictated by the values in Table 7 in order to 

encourage element elimination for comparison of moderate fracture patterns, more 

severe than those described above in order to fully investigate propagation. 

Table 7 Plastic behavior in 21-day-old pilot models 

 MAT 105 

(BOTH) 

MAT 124 

(TENSION) 

MAT124 

(COMPRESSION) 

Et 1 GPa 400 MPa 20 GPa 
σy 100 MPa 80 MPa 80 MPa 
εy 0.8% -- -- 

 

Simulation results are shown in Figure 37. It is evident that the artificial 

strengthening of the bone area under the impact center does not prevent fractures from 

occurring in the center of the parietal bone. The strain energy-based criterion predicts a 

less diffuse fracture pattern, more in agreement with the laboratory tests. Further 

investigation was indicated to determine appropriate parametric values for material 

behavior and failure, which were performed iteratively and reported in Chapter 4, using 

only the elastic-viscoplastic constitutive model. 
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A 

 

B 

Figure 37 Initial fracture patterns at 1.5 ms for strain-based (A) and strain energy-

based (B) failure criteria, initiating at a similar point at the junction of the 

squamosal and coronal sutures 

  

 Further results are shown in Appendix 2 for, comparing the biomechanical 

response of the 7- and 21-day-old MAT105 pilot models. Stress and strain contours at 

peak deflection show higher sensitivity to biomechanical response criteria not 

considered for failure thresholds in LS-DYNA. This will be incorporated with the findings 

of the parametric studies and discussed in more detail in the conclusions of Chapter 5. 
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Validation  

To ensure that the computational models using MAT 105 produced global 

behavior consistent with the experimental subjects, the following criteria were obtained 

from Baumer et al. (2009). For this dissertation work, only rigid impacts were 

considered; the average contact area for a 7-day-old piglet was 120 mm2 with 610 N 

contact force, and the average contact area for a 21-day-old piglet was 215 mm2 with 

955 N impact force, as seen in Figure 38. Peak displacements were calculated by 

integrating acceleration curves from the impactor and were not measured locally. The 

resulting data had a very large deviance, and given that they were global 

measurements, were not considered appropriate for validation in this study. For 

reference, the deflection ranges were on the order of 4 to 17 mm for rigid impacts in 

piglets from 2 to 28 days of age.  

 

Figure 38 Contact area and impact force with red lines showing validation data for 

the 7- and 21-day-old models [reproduced from Baumer et al. (2010)] 

 

For the 7-day-old model, the validation results are shown in Figure 39. As in the 

experiment, the impactor rebounds, as shown in Figure 39A. The peak displacement is 

less than those reported by Baumer (2009), which will be discussed later. The energy 
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balance, shown in Figure 39B, shows no sign of hourglass energy loss, although a 

slight decrease in total energy due to element deletion is evident. Contact area was 

calculated by creating a bi-color representation of the indented region of the impactor 

shown in Figure 39C at peak parietal deflection and using a histogram to determine the 

percentage of area contacted. This calculation yielded good agreement at 125 mm2, 

within 4% of the target value. Contact force was over-estimated by the solver, a known 

problem in LS-DYNA, which can be exacerbated by additional contact definitions 

needed to account for voids left by deleted elements, so this parameter was 

disregarded in favor of fracture pattern analysis. 

 

   A                                                                                                                   B 

 
C 

Figure 39 Validation criteria for the 7-day-old model baseline simulation, where 

(A) shows peak parietal bone displacement in mm vs. time in ms, (B) shows 

global energy output in J vs. ms time, and (C) shows the contact area indentation 
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The 21-day-old model showed a higher peak deflection (Figure 40A), due to a 

combination of increased impact energy and decreased bone stiffness. The energy 

balance remained constant overall (Figure 40B), indicating that energy loss in the 7-

day-old model was due to effects other than element elimination. The contact area did 

not match as well for the 21-day-old model, with 280 mm2 predicted by the simulation, 

an over-prediction of 30%. This is probably due to the engagement of the occipital ridge, 

which is more prominent in the 21-day-old piglet than in the 7-day-old piglet. It is unclear 

whether this was also a factor in the laboratory tests or was possibly not within the 

scope of measurement. Further investigations into impactor orientation are reported in 

Chapter 4 and highlight the importance of this finding. 

 

 
   A                                                                                                                   B 
 

 
C 

Figure 40 Validation criteria for the 21-day-old model baseline simulation, where 

(A) shows peak parietal bone displacement in mm vs. time in ms, (B) shows 

global energy output in J vs. ms time, and (C) shows the contact area indentation 
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Discussion 

The computational models developed in this study required a solution time of 

approximately 30 hours on 16 AMD Opteron CPUs with 2.4 GHz clock speed. The 

computational resources needed were dictated by several model factors, including the 

skin soft tissue calculations, contact definitions for the void left by deleted elements, and 

the small element size. Although a convergence study was performed to determine the 

suitably of Hughes-Liu shell formulation, the effect of element size on failure was not 

considered. Because of the nature of the element deletion technique, simulated fracture 

lines appear wider in the computational model than in the physical experiments. Given 

the overall agreement with global biomechanics data, it can be assumed that the effects 

are negligible; however, further sensitivity studies of the complete skull model would be 

appropriate before deployment for forensic analysis when computational resources are 

sufficient for the task. The current element size of 0.5 mm was chosen based on current 

computational limitations and confirmed to be globally appropriate, but confirmation of 

failure convergence would be ideal. 

A comparison of the 7- and 21-day-old models in terms of fracture initiation site 

can be seen in Figure 41. This may be an effect of the overall skull compliance, in 

particular, the relative compliance of the suture relative to the bone. In the 7-day-old 

model, the bone was assigned an elastic modulus of 7 GPa, more than twice the 3 GPa 

of the sutures. For the 21-day-old model, the bone elastic modulus was 5 GPa. 

Although Baumer et al. (2009) reported this was not a statistically significant difference 

by age, these values were chosen to investigate the overall effects. The biomechanical 

parameters used for validation were not affected adversely, leading to the conclusion 
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that the global deformation of the skull was reasonable for both ages. However, when 

the plasticity and failure material parameters were kept identical (as in the models of 

Figure 41), fracture initiation sites in the 7-day-old model seemed to occur more 

remotely from the bone margin and were not as accurate. Whether this is a geometric or 

material effect is unclear. 

A 

B 

Figure 41 Fracture initiation sites in the 7-day-old model (A) and the 21-day-old 

model (B) 
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Despite these fracture initiation results, the current failure algorithms/criteria 

available in the commercial software code LS-DYNA is not complex enough to replicate 

fracture patterns as accurately as required. As the fracture progresses, the results 

become more inaccurate. Sensitivity and robustness studies are needed to determine 

whether the use of MAT105 for bone fracture modeling is appropriate. These studies 

are reported in Chapter4. 

As mentioned previously, the failure thresholds determined by these models 

cannot be directly translated from experiment to computational model. Besides the 

macro versus micro-structure argument, there are also numerical considerations. The 

failure strain defined within the model is calculated per element. Therefore, model 

results pertaining to element elimination are necessarily mesh dependent. Another 

issue is that contact force may have numerical artifact in the LS-DYNA solver and may 

be affecting the calculation of the failure threshold values. The failure criterion used in 

this study may not be appropriate to other models, which must be considered when 

translating the results to human models in the future.  

Additionally, material property data available is insufficient for a complete 

understanding of the fracture behavior of pediatric bone tissue, which makes it difficult 

to employ user-defined crack initiation and propagation algorithms. The data produced 

by Baumer (2009) reports only elastic behavior, which may be due to the use of a 

bending load modality (Currey, 1999), and does not identify the location of crack 

initiation in either the material tests or the impact tests. Further research is needed by 

experimentalists if complex failure finite element models appropriate for mature and 

developing bone are to be developed. 
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Conclusion 

 Fracture initiation sites can be predicted by current finite element modeling 

techniques, but further refinement of the constitutive models to include fracture 

mechanics theory and crack propagation algorithms are needed in commercial software 

packages such as LS-DYNA. The reliability of such models must be quantified in order 

to offer useful predictive ability. 

Despite the amount of data available for piglet skull bone material, more 

experimental studies are necessary to understand the plastic behavior of the bone, 

especially in the context of mineralization and ossification.  The ossification center of the 

parietal bone seems to indicate that the material properties of a growing bone are 

region-dependent, and this may affect simulations significantly, especially when relying 

on a simplified method of representing bone architecture. Structural concerns remain a 

limitation of using shell elements to simulate bending. Further analysis is needed. 
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CHAPTER 4 

PARAMETRIC STUDIES AND SENSITIVITY OF THE 

PIGLET SKULL FRACTURE MODEL 

Objective 

The objective of this chapter is to exercise the piglet head finite element models for the 

purpose of determining which input parameters most affect the resulting fracture pattern 

and severity. Through systematic validation and parametric study, the biomechanical 

fidelity of the model can be ascertained, even quantified, to lend confidence to 

simulation predictions and identifying sensitive parameters.  Design of Computer 

Experiments (DOCE) can provide insight into pediatric skull fracture biomechanics 

across species and generate guidance for translation of the piglet head model’s findings 

to forensic applications and future experimental/computational work. 

Introduction 

The development of a validated piglet skull fracture model is an intermediate step 

towards the development of pediatric skull models that can be used in forensic studies.  

The modeling techniques used to develop the piglet head models in this study have not 

been used in blunt impact models of this scale, particularly for the head. Parametric 

studies can be used in iterative simulations to explore a variety of biomechanical input 

conditions. These conditions can include both model parameters and loading 

conditions, and both have been exercised in this study to investigate model sensitivity 

and robustness. Three hypotheses are considered in this chapter: 

1) Injury mechanism hypothesis – fracture lines follow areas of bone 

translucency and thinness 
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2) Failure threshold hypothesis – Critical damage value in MAT105 constitutive 

model is sufficiently mathematically sensitive  

3) Local geometry hypothesis – orientation of the impactor affects fracture 

pattern due to local geometry 

Methods 

Injury mechanism hypothesis 

 The original hypothesis for injury mechanism involved fracture lines following 

regions of translucency corresponding to local thin areas on the bone plate.  In order to 

determine if regional variations in thickness of the parietal bone explain inter-subject 

variability in fracture pattern results, the following procedure was developed to allow 

variable element thickness in the parietal bone of the computational model. 

The thickness of each cranial bone was calculated through an in-house program 

coded in Python 2.4, which projected the quadrilateral mesh for each bone plate onto 

the unsmoothed inner surface STL, in a direction normal to the elemental surface. 

Figure 42 graphically describes the procedure. This determined an accurate thickness 

value at discrete local points corresponding to nodal positions of the mesh. The 

thickness values of the four nodes which defined each quadrilateral element were 

averaged to define element thickness, and the frequencies of each thickness value (in 

increments of 0.1 mm) were plotted on a histogram. Only parietal bone regional effects 

were considered, and the shell elements were assigned one of ten thickness values 

based this histogram frequency to investigate the effect of the uneven inner skull 

surface on fracture pattern. 



www.manaraa.com

75 

 

 

 

 

Figure 42 Flowchart describing Python algorithm (blue boxes are performed in 

Hexmorpher, green in Mimics, gray in Hypermesh, orange in Python scripting) 

 

Failure threshold hypothesis 

Design of Computer Experiments (DOCE) was utilized to test the hypothesis that 

once an appropriate failure criterion was established, the threshold parameter was 

sensitive enough to differentiate between failure and non-failure loading. Several 

parameters from the constitutive model were chosen for analysis using a full factorial 
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design (as shown in Table 8) for the 21-day-old model only, to remove the confounding 

effects of differing geometry and mesh pattern.   

Table 8 Full factorial DOCE matrix 

 BONE 

ID DC E 

(GPa) 

EPSD 

(10
-2

%) 

0 0.001 8 0.01 

1 0.001 8 0.015 
2 0.001 8 0.02 
3 0.001 10 0.01 
4 0.001 10 0.015 
5 0.001 10 0.02 
6 0.001 12 0.01 

7 0.001 12 0.015 
8 0.001 12 0.02 
9 0.002 8 0.01 
10 0.002 8 0.015 
11 0.002 8 0.02 
12 0.002 10 0.01 

13 0.002 10 0.015 
14 0.002 10 0.02 
15 0.002 12 0.01 
16 0.002 12 0.015 
17 0.002 12 0.02 
18 0.003 8 0.01 

19 0.003 8 0.015 
20 0.003 8 0.02 
21 0.003 10 0.01 
22 0.003 10 0.015 
23 0.003 10 0.02 
24 0.003 12 0.01 

25 0.003 12 0.015 
26 0.003 12 0.02 

 

The failure parameters considered were DC, the critical damage value at which 

elements were deleted, and EPSD, the value of plastic strain at which material softening 

began. Because the results of the validated models reported in Chapter 3 showed 

fractures more severe than those produced in the laboratory study, the strain softening 

parameter was increased to delay the onset of fracture initiation and reduce fracture 
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lengths. Additionally, the bone stiffness, initially predominately determined by the elastic 

modulus, E, was varied. The ranges for this parameter were chosen to be at the upper 

end of the data reported by Baumer et al. (2009) in order to exaggerate the influence of 

the stiffness differences between bone and suture, highlighting the effects of the 

bending mode of loading.  

Local geometry hypothesis 

It was hypothesized that local geometric variations effect fracture pattern, 

especially based on results seen from the engagement of the parietal-occipital boundary 

and the bone thickness in that area. Although Baumer (2009) noted that the impact 

direction in the drop stand experiments was normal to the parietal bone surface, this is 

difficult to quantify visually and some variation should be expected. For this parametric 

study, the assumption was made that the determination of the parietal bone midpoint 

(i.e., the impact point) exhibited much less variation and therefore was kept constant in 

the simulations. 

The impactor was rotated around the impact point in four directions, as shown in 

Figure 43. For each direction, two levels were considered: 1 degree of rotation and 5 

degrees of rotation. This was done to investigate what amount of variance resulted in 

visually observable differences in fracture pattern. Again, only the 21-day-old model was 

utilized, because the effects were expected to be greater (especially in the negative y 

direction) due to the more pronounced occipital ridge. The predicted fracture patterns 

were compared to the baseline model (run ID #20 from the DOCE shown in Table 8). 

 

 

 



www.manaraa.com

78 

 

 

 

 

Figure 43 Orientation directions along –x impact path 

Results 

Injury mechanism hypothesis 

Porosity – Although predominately material concerns were addressed in this 

chapter, the issue of porosity and its effect on the beam testing results were considered. 

In the laboratory-produced impacts, areas of translucency seemed to correlate with 

fracture likelihood near the bone margins. This has been noted in other studies, such as 

Weber’s, as well. To investigate whether this phenomenon might improve fracture 

initiation site predictions in the computational model, 17-µm resolution microCT images 

were procured of dry parietal bone plates. Figure 44 shows the areas of low density or 

high porosity for each of the piglet ages modeled. No pattern emerges that indicates 

areas of translucency alone can account for fracture pattern susceptibility leading to the 

radial fracture patterns seen in the laboratory study. 

Positive y (+θy) 
anterior 

towards coronal 
suture 

Negative y (-θy) 
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towards lamboidal 
suture 

Positive z (+θy) 
inferior 
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Figure 44 Areas low density appear dark, indicate porous and/or thin local 

variation 

Bone thickness – Utilizing the method shown in Figure 42, element thicknesses 

were plotted as the histogram shown in Figure 45. The average element thickness was 

calcualted as 3.3 mm, with a median of 2.8 mm. 

Count  
Element Thickness (mm) 

Figure 45 Parietal bone thickness histogram for the 21-day-old piglet head 
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Element thicknesses were assigned to the computational model, and a contour 

plot showing the regions of thickness is shown in Figure 46A. The resolution of the 

element thickness is limited by mesh size, at 0.5 mm edge length, and it can be seen 

that the change in thickness is gradual (i.e., a very thin element will not be found 

adjacent to a very thick element). Results indicate that neither fracture initiation nor 

propagation were positively affected by these local thickness variations, as shown in 

Figure 46B. In fact, many of the deleted elements are located in areas where the 

thickness is greatest. 

In order to determine whether further mesh refinement allowing higher resolution in 

local thickness variation would be able to account for bone thickness effects on fracture 

pattern (should they exist), an artificially-induced fracture was created, as shown in 

Figure 47. In Figure 47A, the areas in which fracture initiation occurs (outlined in black 

on the parietal bone inferior aspect) were given 1/6 the thickness of the surrounding 

bone. The resulting fracture pattern predicted by simulation is very similar to the 

laboratory-produced fractures. However, when the thickness ratios are less (such as 2/3 

as shown in Figure 47B), the effects are no longer observable. The results here are 

inconclusive, but further mesh refinement is computationally prohibitive in this macro-

level model. 
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A 

 

B 

Figure 46 (A) Variable thickness assignment of the parietal bone at 10 levels 

(fringe level unit = mm) and (B) fracture predictions showing no effects of the 

bone thickness variations 
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A B 

Figure 47 Artificially-created fracture lines (A) with a 1:6 thickness ratio and a more 

physiologically realistic 2:3 thickness ratio (B) showing the lack of discernable effect  

 

Failure threshold hypothesis 

 The full factorial DOCE parametric study did indicate that the failure criteria DC 

and EPSD had an effect on fracture pattern (see Table 9 and Appendix 3). However, 

trends were much clearer in the strain softening value, possibly indicating a higher 

sensitivity to this input parameter. The overall shape of the fracture pattern seemed to 

be dictated by the bone stiffness, while fracture length and severity were dominated by 

the failure thresholds. 

 Sensitivity to the failure parameters may not be sufficient to model mild fractures. 

The differences in material input between fracture and no fracture simulations were 

often very small, and further refinement within the ranges of this DOCE did not improve 

the results. Using this constitutive model and its strain energy-based criterion, once 

fracture begins, it becomes catastrophic quickly. Given the equations shown in Chapter 

3 in which it be seen that the rate of damage accumulation is non-linearly inversely 

proportional to the instantaneous value of the damage parameter, D, this was not an 

expected result. 
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Table 9 DOCE summarized results (also see Appendix 3) 

 INPUT  OUTPUT 

ID DC E EPSD  FX PATTERN  SEVERITY  

0 0.001 8 0.01  Y circular moderate 

1 0.001 8 0.015  Y circular severe 
2 0.001 8 0.02  N none none 
3 0.001 10 0.01  Y circular severe 
4 0.001 10 0.015  Y circular moderate 
5 0.001 10 0.02  Y circular moderate 
6 0.001 12 0.01  Y y-shaped moderate 

7 0.001 12 0.015  Y linear moderate 
8 0.001 12 0.02   Y y-shaped mild 
9 0.002 8 0.01  Y u-shaped mild 
10 0.002 8 0.015  Y u-shaped  moderate 
11 0.002 8 0.02   Y y-shaped mild 
12 0.002 10 0.01  Y circular severe 

13 0.002 10 0.015  Y circular severe 
14 0.002 10 0.02  N none none 
15 0.002 12 0.01  Y circular severe 
16 0.002 12 0.015  Y circular moderate 
17 0.002 12 0.02  Y y-shaped moderate 
18 0.003 8 0.01  Y u-shaped moderate 

19 0.003 8 0.015  Y circular moderate 
20 0.003 8 0.02   Y linear mild 
21 0.003 10 0.01   Y u-shaped mild 
22 0.003 10 0.015  Y circular severe 
23 0.003 10 0.02  N none none 

24 0.003 12 0.01  Y y-shaped severe 
25 0.003 12 0.015  Y y-shaped moderate 
26 0.003 12 0.02   Y linear mild 

 

Local geometry hypothesis 

 Fracture patterns from the impactor orientation study are reported in Table 10. 

Again, no clear trends are seen; however, the model seems to be most sensitive to 

changes in which the impactor is rotated towards the squamosal-coronal suture 

junction, one of the identifiable fracture initiation points from the experimental study. The 

degree of rotation has some effect due to the curvature of the bone, and it is apparent 
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that the robustness of this fracture model is insufficient for ambiguous impact 

conditions. 

Table 10 Impactor orientation effects 

BASELINE 

 
@1.7 ms 1-degree Rotation 5-degree Rotation 

Positive y (anterior) 

@ 2 ms 
 

@1.3 ms 
Negative y (posterior) 

 
after rebound 

 
after rebound 

Positive z (inferior) 

 
after rebound 

 
@1.9 ms 

Negative z (superior) 

 
after rebound 

 
after rebound 
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Discussion 

The original hypothesis of this study, that bone translucency is the predominant 

structural factor in skull fracture, seemed to be false, but could not be definitively 

proven. It was shown that bone thickness or porosity alone were not enough to explain 

the linear fracture path observed in outbending. Higher resolution of local thickness 

variation may show greater effect; however, this is limited by computational resources 

and would be difficult to translate into forensic applications due to that fact. 

The usefulness of computational models is limited by their sensitivity and 

robustness. In this study, it was seen that the failure algorithms in MAT105 in LS-DYNA 

may not be sufficient for the purpose of modeling mild linear fractures in bone. The all-

or-nothing type of response is likely due to the lack of crack propagation algorithms in 

the LS-DYNA material model. Fracture mechanics theory is well-understood as the 

development of strain energy at the crack tip; and by applying a strain energy threshold 

to discrete elements instead, fracture predictions in the computational model are not 

dictated by the crack tip energy, possibly affecting propagation accuracy even when the 

alternate failure criterion is valid.  

Further tensile tests of developing bone and suture are needed to characterize 

strain softening effects, which seem to have a profound effect on fracture. Additionally, 

rate effects have not been considered, and given the amount of collagen and 

unossified/mineralized bone in pediatric tissue, these effects may be significant. 

However, this is beyond the scope of this study and would not be expected to overcome 

the deficiencies in the failure model. 
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The robustness of the computational model to changes in impactor orientation 

was poor, as hypothesized. Due to the curvature of the bone plate, there may be a 

“sweet spot” at which fracture is more likely, and it is postulated that this could be 

related to structural effects at the ossification center. Further research is needed. A 

smaller scale computational model (e.g., the parietal bone plate alone) would allow for 

more in depth validation due to more controlled boundary conditions and higher 

resolution due to size. Structural effects could be considered at that level, then applied 

to the maco-level blunt impact models like those seen here. 

Statistical significance – Due to the lack of trends seen in these parametric 

studies, meaningful statistical analysis was not possible.  

Conclusion 

The development of piglet head models with elastic-plastic bone behavior and 

failure is of limited relevance without systematic validation.  Although the spread of data 

in the experimental studies can be explained by anatomic variation among piglet 

subjects, the model is deterministic, representative of only a single case.  As with any 

computational model, some degree of approximation is involved in both model 

development and solution.  The uncertainty of parameters in the model can be 

exercised with parametric studies and statistical analysis in order to determine 

quantitatively their relative effect on model-predicted responses, but further 

experimental research is needed in order to fully understand and quantify the behavior 

of bone and suture, especially in terms of fracture. 

The parametric studies reported here highlight the ability of computational 

models to iteratively investigate a phenomenon, but confounding unknowns may have 
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limited the application of these model results to real-world impact scenarios. One can 

conclude from the results, however, that caution should be exercised when evaluating 

the predictions of computational simulations in a forensic arena, as the robustness of 

the results directly related to input parameters, which must be estimated in some cases. 

It is suggested that, for any forensic modeling application, a parametric study should be 

employed to visually illustrate the possible range of results given expected input 

variance. 
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CHAPTER 5 

CONCLUSIONS 

Summary 

In this study, two piglet head computational models were developed and 

validated based on laboratory-produced experimental data. These models employed 

finite element techniques and constitutive models incorporating failure criteria, and 

element deletion was utilized to simulate fracture patterns due to blunt impact.  

Parametric studies were used to exercise the model sensitivity to the selected stress-

based failure criterion. A Design of Computer Experiments approach was used to 

statistically evaluate the repeatability of the fracture pattern results when slight changes 

are made to the input conditions, such as impactor orientation. It was found that the 

commercial finite element solver code chosen for this study (LS-DYNA), the available 

material models do not include sufficient continuum fracture mechanics theory to 

simulation crack propagation reliably. In concert with technical improvements to the 

constitutive models, further age- and species-specific biomaterials research is required 

to differentiate between stages of bone development and incorporate structural 

morphology. At that point, computational models could be used to determine regional 

effects of growth and development, as well as failure mode behavior for biomechanical 

and forensic analyses. 

Limitations of the Computational Models 

 Limitations of this work include the absence of experimentally-determined 

plasticity behavior for piglet bone, simplifications in the modeling of suture 

biomechanics, and lack of crack tip propagation algorithms. In studies such as Guan et 
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al. (2011), large variations were seen in the plastic behavior of bone samples when 

material properties were reverse-engineered using optimization-based methods. This 

indicates that local morphological effects may be more noticeable in plasticity versus 

elasticity. Given that pediatric bone is in a state of flux during development, these local 

differences are possibly more pronounced, suggesting that this is a very important 

factor in modeling pediatric bone tissue. Additionally, more rigorous validation and 

sensitivity studies would be ideal, if more data were available, especially in regard to the 

sutures.  

Failure criteria available in LS-DYNA do not include crack propagation 

algorithms, although the mathematical theory is well-known. In terms of skull fracture 

specifically, there is a need to examine appropriate failure criteria for both initiation and 

propagation. In Appendix 2, several stress-strain contours at the time of peak deflection 

are reported for the validated piglet skull models. Stress-based criterion, as used by 

previous pediatric finite element head models, show stress concentrations developing in 

response to both inbending and outbending. If this is to be used as a failure criterion, it 

is paramount to be able to assign different thresholds in tension and compression. For 

strain-based criteria, plastic strain initially develops largely in areas of outbending, but 

as elements are deleted, the local plastic strain response does not match fracture lines. 

Principal strains show the same type of response. Although not available as a failure 

criterion for any current LS-DYNA material model, Green’s strain shows no 

concentration under the impactor, even at peak deflection, and warrants further 

investigation for computational studies of outbending-induced skull fracture. The strain 

energy-based criterion used in MAT105 is driven by several factors, such as Von Mises 
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stress and the triaxiality function. It is difficult to determine to which factor this criterion is 

most sensitive. However, with element elimination, the direction of fracture propagation 

(from the bone margin towards the center of impact) matches well with the experimental 

study.  

In this study, the two computational models were developed from age-matched, 

subject-specific geometries. Unfortunately, micro-level skull morphology (such as the 

growth of a fluid-filled spongy bone layer in the 21-day-old model) could be not 

incorporated at this time. The major behavior differences between the two models were 

driven by the ratio of bone strength to suture strength, which was higher for the younger 

piglet. Tissue-level validation in future computational models of this type would be 

appropriate and allow for accurate prediction of fracture pattern instead of initiation site 

only. 

Closing Remarks and Future Work 

The use of computational modeling in this work allows for the minimization of 

anatomical variability inherent in laboratory tests such as age and level of biological 

development, as well as local skull curvature and thickness variations.  With proper 

validation, confidence in model predictions for specific impact events should be high, 

although these computational models may not perform well in all impact scenarios in 

terms of quantitative biomechanical responses for validation or fracture pattern.  The 

development of these models was specific to parietal fracture through direct impact.  

However, the comparison of the two model geometries, representing different levels of 

development within a pediatric population, indicate that age-related changes can have 

significant biomechanical effect that can be replicated even with limited data. 



www.manaraa.com

91 

 

 

 

Models developed in this work do not include the intracranial contents, because 

focus was placed on skull fracture. Gurdjian and Lissner (1945) showed experimentally 

that the intracranial contents did not affect fracture patterns, though the overall 

biomechanics and tolerance may be affected. Some finite element models of the infant 

head in literature showed that the brain stiffness affected skull response, but none of 

these studies utilized failure modeling techniques or concentrated on replicating skull 

fracture patterns. In future work, a brain model should be developed to investigate 

concomitant skull fracture and brain injury, as well as to better understand the role of 

suture flexure in pediatric closed head injuries. 

Although a direct age correlation relationship between piglets and children is not 

known for the skull as a whole, the same basic biomechanical principles apply.  The 

long-term goals of this project involve translating the methods presented here into an 

infant head model and developing a tool for the forensic practitioner.  Currently, the 

incompleteness of an age-matched material behavior dataset for pediatric subjects is a 

major obstacle to this endeavor.  More research is needed in this area.  Additionally, 

although some anatomical effects can be accounted for by using subject-specific 

geometries, structural effects on the micro level may pose more difficulty.  Limiting the 

first attempts to infants of less than three months of age, before the diploë layer begins 

to develop would be a good first step in adapting the techniques presented here into 

human use.  Once suture behavior is more clearly understood, this skull fracture model 

could be incorporated with a brain injury model to give a much clearer picture of head 

injury biomechanics in the pediatric population. 
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APPENDIX 1  

SUMMARY OF PEDIATRIC HEAD IMPACT MODELS IN THE LITERATURE 

Simplified 
Author Kurtz, et al. (1998) Margulies and Thibault (2000) 

Figure 

 

 
Software LS-DYNA3D ANSYS/LS-DYNA3D 
Geometry Idealized Idealized 

Age 3 months 1 month 

Elements 

• 25,279 eight-node 
hexagonal solids for the 
indentor, brain, and CSF 

• 5,514 four-node 
quadrilateral shells for the 
bone, foramen magnum, 
and dura 

• 137 two-node, 1D springs 

12,772 total elements 

Materials 

Elasto-plastic bone: 

E = 880 MPa 
σy = 12 MPa 
σt = 47 MPa 
ν = 0.28 
Suture (springs): 

K = 189 N/mm 
Linear viscoelastic brain 

(from porcine): 

G0 = 5.99e-3 MPa 
G = 2.32e-3 MPa 
β = 9.43e-2 s 
K = 2110 MPa 
Dura and foramen 

magnum: 

E = 100 MPa 

Bone: 

E = 1300 MPa 
ρ = 2150 kg/m3 

ν = 0.28 
Suture: 

E = 200 MPa 
ρ = 1130 kg/m3 

ν = 0.28 
Linear viscoelastic brain 

(from porcine): 

G0 = 5.99e-3 MPa 
G = 2.32e-3 MPa 
β = 9.43e-2 s 
K = 2110 MPa 
Dura and foramen magnum: 

E = 100 MPa 
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Complex, without face 
Author Coats, et al. (2008) Zhang, et al. (2007) 

Figure 

  
Software ABAQUS/Explicit MSC Patran 

Geometry 
CT and MRI from 5 week old subject; 
suture geometry idealized 

CT from 7 year old 
subject, craniofacial 
sutures reconstructed 

Age 1.5 months 7 years 

Elements 

• 11,066 ten-node tetrahedral solids for 
brain 

• 18,706 8-node hexagonal continuum 
shells for skull 

• 2,485 4-node membrane elements for 
sutures 

• 624 8-node hexagonal solids for  scalp 

• 57,481 nodes 

• 52,901 elements 

Materials 

Nonlinear isotropic viscoelastic 

hyperelastic (Odgen) brain (µ and α 

scaled from adult, using porcine 

ratios): 

µ = 559 Pa 
α = 0.00845 
ρ = 1040 kg/m3 
ν = 0.499 
Orthotropic linear elastic bone: 

ρ = 2090 kg/m3 
ν12 = 0.19 
Parietal:  E1 = 453 Mpa, E2 = 1810 
MPa,G = 662 MPa 
Occipital: E1 = 300 Mpa, E2 = 1200 
MPa, G = 503 MPa 
Linear elastic suture (ρ and ν from 

adult primate): 

ρ = 1130 kg/m3 
ν = 0.49 

E = 8.1 MPa 
Linear elastic scalp (from adult 

primate): 

ρ = 1200 kg/m3 
ν = 0.42 

E = 16.7 MPa 

Cortical bone: 

E=13.7 GPa 
ν = 0.3 
Cancellous bone: 

E=7.9 GPa 
ν = 0.3 
Teeth: 

E=20.7 GPa 
ν = 0.3 
Suture: 

E=7.1 GPa 
ν = 0.45 
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Complex, with face 
Author Klinich, et al. (2001) Roth, et al. (2007, 2008) 

Figure 

  
Software LS-DYNA  

Geometry 
CT from 27 week subject; facial 
geometry from Zygote model 

CT from 6 month subject 

Age 6 months 6 months 

Elements 
• Shell: scalp 

• Solid: CSF, dura, and brain 

• Thick shell: skull and suture 

69,324 bricks 
9,187 shells 

Author Klinich, et al. (2001) Roth, et al. (2007, 2008) 

Materials 

Skull (from porcine): 

ρ = 2150 kg/m3 
E = 3.0 GPa 
ν = 0.22 
Suture (from porcine): 

ρ = 2150 kg/m3 
E = 1.95 GPa 
ν = 0.22 
Brain (from porcine): 

G0 = 5.99 kPa , G = 2.32 kPa 
β = 9.43e-2 s 
K = 2110 MPa 
CSF (from adult): 

ρ = 1040 kg/m3 
E = 70 kPa 
ν = 0.499 
Dura (from adult): 

ρ = 1133 kg/m3 
E = 31.5 MPa 
ν = 0.45 
Scalp (from adult): 

ρ = 1200 kg/m3 
E = 17 MPa 
ν = 0.42 
Face (estimated):  

ρ = 9000 kg/m3 
E = 30 kPa 
ν = 0.22 

Skull: 

ρ = 2150 kg/m3 
E = 2.5 GPa 
ν = 0.22 
Suture: 

ρ = 2150 kg/m3 
E = 1.5 GPa 
ν = 0.22 
Brain (from porcine): 

G0 = 5.99 kPa  
G = 2.32 kPa 
β = 9.43e-2 s 
K = 2110 MPa 
CSF (from adult): 

ρ = 1040 kg/m3 
E = 12 kPa 
ν = 0.49 
Dura (from adult): 

ρ = 1040 kg/m3 
E = 31.5 GPa 
ν = 0.45 
Scalp (from adult): 

ρ = 1200 kg/m3 
E = 16.7 MPa 
ν = 0.42 
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APPENDIX 2 

STRESS-STRAIN CONTOURS  
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APPENDIX 3 

FULL FACTORIAL DESIGN OF COMPUTER EXPERIMENTS RESULTS 

 

0 

 

DC = 0.001 

E = 8 GPa 

EPSD = 0.010 

 

1 

 

DC = 0.001 

E = 8 GPa 

EPSD = 0.015 

NO FRACTURE 

2 

 

DC = 0.001 

E = 8 GPa 

EPSD = 0.020 
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3 

 

DC = 0.001 

E = 10 GPa 

EPSD = 0.010 

 

4 

 

DC = 0.001 

E = 10 GPa 

EPSD = 0.015 

 

5 

 

DC = 0.001 

E = 10 GPa 

EPSD = 0.020 
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6 

 

DC = 0.001 

E = 12 GPa 

EPSD = 0.010 

 

 

7 

 

DC = 0.001 

E = 12 GPa 

EPSD = 0.015 

 

8 

 

DC = 0.001 

E = 12 GPa 

EPSD = 0.020 
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9 

 

DC = 0.002 

E = 8 GPa 

EPSD = 0.010 

 

10 

 

DC = 0.002 

E = 8 GPa 

EPSD = 0.015 

 

 

11 

 

DC = 0.002 

E = 8 GPa 

EPSD = 0.020 
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12 

 

DC = 0.002 

E = 10 GPa 

EPSD = 0.010 

 

 

13 

 

DC = 0.002 

E = 10 GPa 

EPSD = 0.015 

NO FRACTURE 

14 

 

DC = 0.002 

E = 10 GPa 

EPSD = 0.020 



www.manaraa.com

113 

 

 

 

 

15 

 

DC = 0.002 

E = 12 GPa 

EPSD = 0.010 

 

16 

 

DC = 0.002 

E = 12 GPa 

EPSD = 0.015 

 

 

17 

 

DC = 0.002 

E = 12 GPa 

EPSD = 0.020 
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18 

 

DC = 0.003 

E = 8 GPa 

EPSD = 0.010 

 

19 

 

DC = 0.003 

E = 8 GPa 

EPSD = 0.015 

 

20 

 

DC = 0.003 

E = 8 GPa 

EPSD = 0.020 
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21 

 

DC = 0.003 

E = 10 GPa 

EPSD = 0.010 

 

22 

 

DC = 0.003 

E = 10 GPa 

EPSD = 0.015 

NO FRACTURE 

23 

 

DC = 0.003 

E = 10 GPa 

EPSD = 0.020 
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24 

 

DC = 0.003 

E = 12 GPa 

EPSD = 0.010 

 

 

25 

 

DC = 0.003 

E = 12 GPa 

EPSD = 0.015 

 

26 

 

DC = 0.003 

E = 12 GPa 

EPSD = 0.020 
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 In cases of suspected child abuse with skeletal trauma, it is often the role of the 

injury biomechanist, forensic pathologist, clinical radiologist, and forensic anthropologist to 

determine the mechanism of injury when the child victims cannot speak for themselves.  This is 

a challenging task, especially for the head, as comprehensive biomechanical data on skull 

fracture in infants and children do not currently exist, and frequently the determination regarding 

cause of injury is based on anecdotal evidence from the medical literature and unsubstantiated 

eyewitness accounts.  The current process may result in unreliable autopsy interpretation and 

miscarriages of justice due to a lack of scientific verification in expert witness testimony.  A 

method to examine the mechanisms of skeletal trauma, specifically skull fracture, in children 

would be beneficial in providing a solid biomechanical foundation to the forensic investigators in 

these child abuse cases. 

Finite element (FE) computational modeling techniques can be used to simulate failure 

of materials, including biological materials such as bone. However the efficacy of these methods 

has not been thoroughly tested against a well-defined experimental dataset, particularly for the 

pediatric population. The specific aims of this study were: (1)To determine appropriate 

constitutive laws and material properties for the piglet skull and suture, (2) To predict skull 
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fracture patterns in a piglet model using FE methods, and (3) To analyze the sensitivity and 

robustness of these FE techniques for reliable biomechanical and forensic analysis. Results 

highlight the ability of macro-scale blunt impact computational models to predict fracture 

initiation sites and the role of computational models in guiding future experimental work. 
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